

Version 4.0.2 Seite 1 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Lehrplan

ISTQB® Certified Tester

Foundation Level

Version 4.0.2

Deutschsprachige Ausgabe. Herausgegeben durch
Austrian Testing Board, German Testing Board e. V. &

Swiss Testing Board

Übersetzung des englischsprachigen Lehrplans des International Software Testing
Qualifications Board (ISTQB®), Originaltitel: Certified Tester, Foundation Level Syllabus,
Version 4.0.1

Certified Tester
Foundation Level

Version 4.0.2 Seite 2 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Urheberschutzvermerk
Dieser ISTQB®-Lehrplan Certified Tester Foundation Level, deutschsprachige Ausgabe, ist
urheberrechtlich geschützt.

Urheberrecht © an der Übersetzung in die deutsche Sprache 2024 steht den Mitgliedern der
D.A.CH Arbeitsgruppe Lokalisierung CTFL zu: Stephanie Ulrich (Leitung, GTB), Sabine
Gschwandtner, Jörn Münzel, Arne Becher, Armin Born (STB), Martin Klonk (ATB), Helmut
Pichler (ATB), Horst Pohlmann (GTB), Dr. Erhardt Wunderlich (GTB).

Urheberrecht © 2024 an diesem Lehrplan haben die Autoren der englischen Originalausgabe:
Renzo Cerquozzi, Wim Decoutere, Jean-François Riverin, Arnika Hryszko, Martin Klonk, Meile
Posthuma, Eric Riou du Cosquer (Leitung), Adam Roman, Lucjan Stapp, Stephanie Ulrich
(stellvertretende Leitung), Eshraka Zakaria.

Urheberrecht © 2023 an diesem Lehrplan haben die Autoren der englischen Originalausgabe:
Er wurde gemeinsam von den Teams der Arbeitsgruppen ISTQB Foundation Level und Agile
erstellt: Eric Riou du Cosquer (geteilte Leitung), Stephanie Ulrich (stellvertretende Leitung),
Michaël Pilaeten (geteilte Leitung), Renzo Cerquozzi (stellvertretende Leitung), Wim
Decoutere, Klaudia Dussa-Zieger, Jean-François Riverin, Arnika Hryszko, Martin Klonk, Meile
Posthuma, Stuart Reid, Adam Roman, Lucjan Stapp, Eshraka Zakaria.

Urheberrecht © an der Übersetzung in die deutsche Sprache 2023 steht den Mitgliedern der
D.A.CH-Arbeitsgruppe Lokalisierung CTFL 4.0 zu:

Stephanie Ulrich (Leiterin, GTB), Ralf Bongard (GTB), Armin Born (STB), Renzo Cerquozzi
(STB), Martin Klonk (ATB), Dr. Seyed Mohsen Ekssir Monafred (ATB), Jörn Münzel, Helmut
Pichler (ATB), Richie Seidl (ATB), Dr. Erhardt Wunderlich (GTB), Dr. Matthias Hamburg (GTB).

Inhaber der ausschließlichen Nutzungsrechte an dem Werk sind das German Testing Board
e. V. (GTB), das Austrian Testing Board (ATB) und das Swiss Testing Board (STB).

Die Nutzung des Werks ist – soweit sie nicht nach den nachfolgenden Bestimmungen und
dem Gesetz über Urheberrechte und verwandte Schutzrechte vom 9. September 1965 (UrhG)
erlaubt ist – nur mit ausdrücklicher Zustimmung des GTB bzw. des ATB oder des STB
gestattet. Dies gilt insbesondere für die Vervielfältigung, Verbreitung, Bearbeitung,
Veränderung, Übersetzung, Mikroverfilmung, Speicherung und Verarbeitung in elektronischen
Systemen sowie die öffentliche Zugänglichmachung.

Dessen ungeachtet ist die Nutzung des Werks einschließlich der Übernahme des Wortlauts,
der Reihenfolge sowie Nummerierung der in dem Werk enthaltenen Kapitelüberschriften für
die Zwecke der Anfertigung von Veröffentlichungen, z. B. für das Marketing eines Kurses,
gestattet. Jede Nutzung des Werks oder von Teilen des Werks ist nur unter Nennung des GTB,
ATB und STB als Inhaber der ausschließlichen Nutzungsrechte sowie der oben genannten
Autoren als Quelle gestattet.

Certified Tester
Foundation Level

Version 4.0.2 Seite 3 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Änderungsübersicht der deutschsprachigen Ausgabe
Version Datum Bemerkung

CTFL V4.0.2 D 01.03.2025 Deutschsprachige Fassung des CTFL V4.0.1 –
Errata

CTFL V4.0.1 D 16.08.2023 Update Urheberschutzvermerk

CTFL V4.0 D 04.08.2023 Deutschsprachige Fassung des ISTQB-
Release 4.0

2018 V3.1D 20.01.2020 Deutschsprachiges Wartungsrelease

2018 D 03.09.2018 Deutschsprachige Fassung des ISTQB-
Release 2018

2011 1-0.2 01.07.2017 Deutschsprachiges Wartungsrelease

2011 1.0.1 19.04.2013 Deutschsprachiges Wartungsrelease

2011 01.08.2011 Wartungsrelease

2010 1.0.1 29.11.2010 Deutschsprachiges Wartungsrelease

2010 01.10.2010 Wartungsrelease

2007 01.12.2007 Wartungsrelease

2005 01.10.2005 Erstfreigabe der deutschsprachigen Fassung
des ISTQB®-Lehrplans „Certified Tester
Foundation Level“

ASQF V2.2 Juli 2003 ASQF Syllabus Foundation Level Version 2.2
„Lehrplan Grundlagen des Softwaretestens“

Certified Tester
Foundation Level

Version 4.0.2 Seite 4 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Änderungsübersicht Originalausgabe
Version Gültig ab Bemerkungen

CTFL v4.0.1 15.09.2024 CTFL v4.0.1 – Errata

CTFL v4.0 21.04.2023 CTFL v4.0 – Generelle Releaseversion

CTFL v3.1.1 01.07.2021 CTFL v3.1.1 – Update von Copyright und Logo

CTFL v3.1 11.11.2019 CTFL v3.1 – Wartungsrelease mit kleineren Updates

ISTQB 2018 27.04.2018 CTFL v3.0 – Generelle Releaseversion

ISTQB 2011 01.04.2011 Lehrplan Certified Tester Foundation Level, Wartungsrelease

ISTQB 2010 30.03.2010 Lehrplan Certified Tester Foundation Level, Wartungsrelease

ISTQB 2007 01.05.2007 Lehrplan Certified Tester Foundation Level, Wartungsrelease

ISTQB 2005 01.07.2005 Lehrplan Certified Tester Foundation Level v1.0

ASQF V2.2 07.2003 ASQF Syllabus Foundation Level, Version 2.2 “Lehrplan
Grundlagen des Softwaretestens“

ISEB V2.0 25.02.1999 ISEB-Lehrplan Software Testing Foundation v2.0

Zur besseren Lesbarkeit wird im gesamten Dokument auf die gleichzeitige Verwendung
männlicher und weiblicher Sprachformen verzichtet. Es wird das generische Maskulinum
verwendet, wobei unterschiedliche Geschlechter gleichermaßen gemeint sind.

Certified Tester
Foundation Level

Version 4.0.2 Seite 5 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Inhaltsverzeichnis

Urheberschutzvermerk 2

Änderungsübersicht der deutschsprachigen Ausgabe 3

Änderungsübersicht Originalausgabe 4

Inhaltsverzeichnis 5

Danksagung 8

0. Einführung in diesen Lehrplan 10

0.1 Zweck dieses Dokuments 10

0.2 Certified Tester Foundation Level im Softwaretest 10

0.3 Karriereweg für Tester 10

0.4 Geschäftlicher Nutzen 11

0.5 Prüfbare Lernziele und kognitive Stufen des Wissens 12

0.6 Die Foundation-Level-Zertifizierungsprüfung 12

0.7 Akkreditierung 12

0.8 Umgang mit Standards 12

0.9 Auf dem Laufenden bleiben 13

0.10 Detaillierungsgrad 13

0.11 Aufbau des Lehrplans 13

1. Grundlagen des Testens – 180 Minuten 15

1.1 Was ist Testen? 16
1.1.1 Testziele 16
1.1.2 Testen und Debugging 17

1.2 Warum ist Testen notwendig? 18
1.2.1 Der Beitrag des Testens zum Erfolg 18
1.2.2 Testen und Qualitätssicherung 18
1.2.3 Fehlhandlungen, Fehlerzustände, Fehlerwirkungen und Grundursachen 19

1.3 Grundsätze des Testens 19

1.4 Testaktivitäten, Testmittel und Rollen des Testens 20
1.4.1 Testaktivitäten und -aufgaben 21
1.4.2 Testprozess im Kontext 22
1.4.3 Testmittel 22
1.4.4 Verfolgbarkeit zwischen der Testbasis und den Testmitteln 23
1.4.5 Rollen des Testens 24

1.5 Wesentliche Kompetenzen und bewährte Praktiken beim Testen 24

Certified Tester
Foundation Level

Version 4.0.2 Seite 6 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

1.5.1 Allgemeine Kompetenzen, die für das Testen erforderlich sind 24
1.5.2 Whole-Team-Ansatz (Whole Team Approach) 25
1.5.3 Unabhängigkeit des Testens 26

2. Testen während des Softwareentwicklungslebenszyklus – 130 Minuten 27

2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus (SDLC) 28
2.1.1 Auswirkungen des Softwareentwicklungslebenszyklus auf das Testen 28
2.1.2 Softwareentwicklungslebenszyklus und gute Praktiken für das Testen 29
2.1.3 Testen als Treiber für die Softwareentwicklung 29
2.1.4 DevOps und Testen 30
2.1.5 Shift-Left 31
2.1.6 Retrospektiven und Prozessverbesserung 31

2.2 Teststufen und Testarten 32
2.2.1 Teststufen 32
2.2.2 Testarten 33
2.2.3 Fehlernachtest und Regressionstest 34

2.3 Wartungstest 35

3. Statischer Test – 80 Minuten 37

3.1 Grundlagen des statischen Tests 38
3.1.1 Arbeitsergebnisse, die durch statische Tests untersucht werden können 38
3.1.2 Wert des statischen Tests 38
3.1.3 Unterschiede zwischen statischem Test und dynamischem Test 39

3.2 Feedback- und Reviewprozess 40
3.2.1 Vorteile eines frühzeitigen und häufigen Stakeholder-Feedbacks 40
3.2.2 Aktivitäten des Reviewprozesses 40
3.2.3 Rollen und Verantwortlichkeiten bei Reviews 41
3.2.4 Arten von Reviews 42
3.2.5 Erfolgsfaktoren für Reviews 43

4. Testanalyse und -entwurf – 390 Minuten 44

4.1 Testverfahren im Überblick 45

4.2 Black-Box-Testverfahren 45
4.2.1 Äquivalenzklassenbildung 45
4.2.2 Grenzwertanalyse 46
4.2.3 Entscheidungstabellentest 47
4.2.4 Zustandsübergangstest 48

4.3 White-Box-Testverfahren 49
4.3.1 Anweisungstest und Anweisungsüberdeckung 50
4.3.2 Zweigtest und Zweigüberdeckung 50
4.3.3 Der Wert des White-Box-Tests 51

4.4 Erfahrungsbasierter Test 51
4.4.1 Intuitive Testfallermittlung 51
4.4.2 Explorativer Test 52
4.4.3 Checklistenbasierter Test 52

Certified Tester
Foundation Level

Version 4.0.2 Seite 7 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

4.5 Auf Zusammenarbeit basierende Testansätze 53
4.5.1 Gemeinsames Schreiben von User-Storys 53
4.5.2 Akzeptanzkriterien Fehler! Textmarke nicht definiert.
4.5.3 Abnahmetestgetriebene Entwicklung (ATDD) 54

5. Management der Testaktivitäten – 335 Minuten 56

5.1 Testplanung 57
5.1.1 Zweck und Inhalt eines Testkonzepts 57
5.1.2 Der Beitrag des Testers zur Iterations- und Releaseplanung 57
5.1.3 Eingangskriterien und Endekriterien 58
5.1.4 Schätzverfahren 59
5.1.5 Priorisierung von Testfällen 60
5.1.6 Testpyramide 60
5.1.7 Testquadranten 61

5.2 Risikomanagement 62
5.2.1 Risikodefinition und Risikoattribute 62
5.2.2 Projektrisiken und Produktrisiken 62
5.2.3 Produktrisikoanalyse 63
5.2.4 Produktrisikosteuerung 64

5.3 Testüberwachung, Teststeuerung und Testabschluss 64
5.3.1 Beim Testen verwendete Metriken 65
5.3.2 Zweck, Inhalt und Zielgruppen für Testberichte 65
5.3.3 Kommunikation des Teststatus 67

5.4 Konfigurationsmanagement 67

5.5 Fehlermanagement 68

6. Testwerkzeuge – 20 Minuten 70

6.1 Werkzeugunterstützung für das Testen 71

6.2 Nutzen und Risiken von Testautomatisierung 71

7. Literaturhinweise 73

7.1 Normen und Standards 73

7.2 Fachliteratur 73

7.3 Artikel und Internetquellen 75

7.4 Deutschsprachige Bücher und Artikel (in diesem Lehrplan nicht direkt referenziert) 76

8. Anhang A – Lernziele/kognitive Stufen des Wissens 77

9. Anhang B – Verfolgbarkeitsmatrix des geschäftlichen Nutzens (Business Outcomes)
mit Lernzielen 79

10. Anhang C – Release Notes 85

11. Index 91

Certified Tester
Foundation Level

Version 4.0.2 Seite 8 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Danksagung
Das englischsprachige Dokument wurde durch den Product Owner / Arbeitsgruppenleiter Eric
Riou du Cosquer am 15. September 2024 offiziell freigegeben.

Es wurde gemeinsam von den Teams der Arbeitsgruppen ISTQB Foundation Level und Agile
erstellt: Renzo Cerquozzi (stellvertretende Leitung Agil), Wim Decoutere, Jean-François
Riverin, Arnika Hryszko, Martin Klonk, Meile Posthuma, Eric Riou du Cosquer (Leitung), Adam
Roman, Lucjan Stapp, Stephanie Ulrich (stellvertretende Leitung), Eshraka Zakaria.

Das englischsprachige Dokument Version 4.0 wurde von der Generalversammlung des
ISTQB® am 21. April 2023 formell freigegeben.

Es wurde gemeinsam von den Teams der Arbeitsgruppen ISTQB Foundation Level und Agile
erstellt: Laura Albert, Renzo Cerquozzi (stellvertretende Leitung), Wim Decoutere, Klaudia
Dussa-Zieger, Chintaka Indikadahena, Arnika Hryszko, Martin Klonk, Kenji Onishi, Michaël
Pilaeten (geteilte Leitung), Meile Posthuma, Gandhinee Rajkomar, Stuart Reid, Eric Riou du
Cosquer (geteilte Leitung), Jean-François Riverin, Adam Roman, Lucjan Stapp, Stephanie
Ulrich (stellvertretende Leitung), Yaron Tsubery, Eshraka Zakaria.

Das Team dankt Stuart Reid, Patricia McQuaid und Leanne Howard für ihr Technisches
Review sowie dem Reviewteam und den nationalen Mitgliedboards für ihre Anregungen und
Beiträge.

Die folgenden Personen waren am Review, der Kommentierung und der Abstimmung zu
diesem Lehrplan beteiligt: Adam Roman, Adam Scierski, Ágota Horváth, Ainsley Rood, Ale
Rebon Portillo, Alessandro Collino, Alexander Alexandrov, Amanda Logue, Ana Ochoa, André
Baumann, André Verschelling, Andreas Spillner, Anna Miazek, Armin Born, Arnd Pehl, Arne
Becher, Attila Gyúri, Attila Kovács, Beata Karpinska, Benjamin Timmermans, Blair Mo, Carsten
Weise, Chinthaka Indikadahena, Chris Van Bael, Ciaran O'Leary, Claude Zhang, Cristina
Sobrero, Dandan Zheng, Dani Almog, Daniel Säther, Daniel van der Zwan, Danilo Magli,
Darvay Tamás Béla, Dawn Haynes, Dena Pauletti, Dénes Medzihradszky, Doris Dötzer, Dot
Graham, Edward Weller, Erhardt Wunderlich, Eric Riou Du Cosquer, Florian Fieber, Fran
O'Hara, François Vaillancourt, Frans Dijkman, Gabriele Haller, Gary Mogyorodi, Georg Sehl,
Géza Bujdosó Giancarlo Tomasig, Giorgio Pisani, Gustavo Márquez Sosa, Helmut Pichler,
Hongbao Zhai, Horst Pohlmann, Ignacio Trejos, Ilia Kulakov, Ine Lutterman, Ingvar Nordström,
Iosif Itkin, Jamie Mitchell, Jan Giesen, Jean-Francois Riverin, Joanna Kazun, Joanne
Tremblay, Joëlle Genois, Johan Klintin, John Kurowski, Jörn Münzel, Judy McKay, Jürgen
Beniermann, Karol Frühauf, Katalin Balla, Kevin Kooh, Klaudia Dussa-Zieger, Klaus
Erlenbach, Klaus Olsen, Krisztián Miskó, Laura Albert, Liang Ren, Lijuan Wang, Lloyd Roden,
Lucjan Stapp, Mahmoud Khalaili, Marek Majernik, Maria Clara Choucair, Mark Rutz, Markus
Niehammer, Martin Klonk, Márton Siska, Matthew Gregg, Matthias Hamburg, Mattijs
Kemmink, Maud Schlich, May Abu-Sbeit, Meile Posthuma, Mette Bruhn-Pedersen, Michal Tal,
Michel Boies, Mike Smith, Miroslav Renda, Mohsen Ekssir, Monika Stocklein Olsen, Murian
Song, Nicola De Rosa, Nikita Kalyani, Nishan Portoyan, Nitzan Goldenberg, Ole Chr. Hansen,
Patricia McQuaid, Patricia Osorio, Paul Weymouth, Pawel Kwasik, Peter Zimmerer, Petr
Neugebauer, Piet de Roo, Radoslaw Smilgin, Ralf Bongard, Ralf Reißing, Randall Rice, Rik
Marselis, Rogier Ammerlaan, Sabine Gschwandtner, Sabine Uhde, Salinda Wickramasinghe,
Salvatore Reale, Sammy Kolluru, Samuel Ouko, Stephanie Ulrich, Stuart Reid, Surabhi

Certified Tester
Foundation Level

Version 4.0.2 Seite 9 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Bellani, Szilard Szell, Tamás Gergely, Tamás Horváth, Tatiana Sergeeva, Tauhida Parveen,
Thaer Mustafa, Thomas Eisbrenner, Thomas Harms, Thomas Heller, Thomas Letzkus, Tomas
Rosenqvist, Werner Lieblang, Yaron Tsubery, Zhenlei Zuo und Zsolt Hargitai.

Die D.A.CH-Arbeitsgruppe ‘Lokalisierung CTFL 4.0’ dankt den Reviewern für ihre Kommentare
und Beiträge: Arne Becher, Florian Fieber, Jan Giesen, Sabine Gschwandtner, Andreas Hetz,
Dr. Matthias Hamburg, Tobias Horn, Thomas Letzkus, Dr. Seyed Mohsen Ekssir Monfared,
Jörn Münzel, Paul Müller, Reto Müller, Manfred Oberlerchner, Horst Pohlmann, Nishan
Portoyan, Prof. Dr. Ralf Reißing, Maud Schlich, Emmi Schuhmacher, Dr. Andreas Spillner,
Dominik Weber, Stephan Weißleder, Marc-Florian Wendland, Carsten Weise, Yu Zou.
ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2018): Klaus Olsen (Leitung), Tauhida
Parveen (stellvertretende Leitung), Rex Black (Projektleitung), Eshraka Zakaria, Debra
Friedenberg, Ebbe Munk, Hans Schaefer, Judy McKay, Marie Walsh, Meile Posthuma, Mike
Smith, Radoslaw Smilgin, Stephanie Ulrich, Steve Toms, Corne Kruger, Dani Almog, Eric Riou
du Cosquer, Igal Levi, Johan Klintin, Kenji Onishi, Rashed Karim, Stevan Zivanovic, Sunny
Kwon, Thomas Müller, Vipul Kocher, Yaron Tsubery und allen nationalen Mitgliedboards für
ihre Vorschläge.
ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2011): Thomas Müller (Leitung), Debra
Friedenberg. Das Kernteam dankt dem Reviewteam (Dan Almog, Armin Beer, Rex Black, Julie
Gardiner, Judy McKay, Tuula Pääkkönen, Eric Riou du Cosquer Hans Schaefer, Stephanie
Ulrich, Erik van Veenendaal) und allen nationalen Mitgliedboards für die Anregungen zur
aktuellen Version des Lehrplans.
ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2010): Thomas Müller (Leitung), Rahul
Verma, Martin Klonk und Armin Beer. Das Kernteam dankt dem Reviewteam (Rex Black, Mette
Bruhn-Pederson, Debra Friedenberg, Klaus Olsen, Judy McKay, Tuula Pääkkönen, Meile
Posthuma, Hans Schaefer, Stephanie Ulrich, Pete Williams, Erik van Veenendaal) und allen
nationalen Mitgliedboards für ihre Anregungen.
ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2007): Thomas Müller (Leitung), Dorothy
Graham, Debra Friedenberg, und Erik van Veenendaal. Das Kernteam dankt dem Reviewteam
(Hans Schaefer, Stephanie Ulrich, Meile Posthuma, Anders Pettersson und Wonil Kwon) und
allen nationalen Mitgliedboards für ihre Anregungen.
ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2005): Thomas Müller (Leitung), Rex Black,
Sigrid Eldh, Dorothy Graham, Klaus Olsen, Maaret Pyhäjärvi, Geoff Thompson und Erik van
Veenendaal. Das Kernteam dankt dem Reviewteam und allen nationalen Mitgliedboards für
ihre Vorschläge.

Certified Tester
Foundation Level

Version 4.0.2 Seite 10 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

0. Einführung in diesen Lehrplan

0.1 Zweck dieses Dokuments

Dieser Lehrplan bildet die Grundlage der internationalen Qualifikation für Softwaretester. Das
German Testing Board e. V. (im Folgenden GTB genannt) hat diesen Lehrplan in
Zusammenarbeit mit dem Austrian Testing Board (ATB) und dem Swiss Testing Board (STB)
in die deutsche Sprache übersetzt. Das ISTQB® stellt den Lehrplan folgenden Adressaten zur
Verfügung:

1. Nationalen Mitgliedboards, die den Lehrplan in ihre Sprache(n) übersetzen und
Schulungsanbieter akkreditieren dürfen. Die nationalen Mitgliedboards dürfen den
Lehrplan an die Anforderungen ihrer nationalen Sprache anpassen und Referenzen
hinsichtlich lokaler Veröffentlichungen berücksichtigen.

2. Zertifizierungsstellen zur Ableitung von Prüfungsfragen in ihrer nationalen Sprache, die
an die Lernziele dieses Lehrplans angepasst sind.

3. Schulungsanbieter zur Erstellung von Lehrmaterialien und zur Bestimmung
angemessener Lehrmethoden.

4. Zertifizierungskandidaten zur Vorbereitung auf die Zertifizierungsprüfung (entweder als
Teil einer Schulung oder unabhängig davon).

5. Der internationalen Software- und Systementwicklungs-Community zur Förderung des
Berufsbildes des Software- und Systemtesters und als Grundlage für Bücher und
Fachartikel.

ATB, GTB, STB und ISTQB® können die Nutzung dieses Lehrplans auch anderen
Personenkreisen oder Institutionen für andere Zwecke genehmigen, sofern diese vorab eine
entsprechende schriftliche Genehmigung einholen.

0.2 Certified Tester Foundation Level im Softwaretest

Die Foundation-Level-Qualifikation richtet sich an alle, die im Bereich des Softwaretestens
tätig sind. Dazu gehören Personen in Rollen wie Tester, Testanalysten, Testengineer,
Testberater, Testmanager, Softwareentwickler und Mitglieder von Entwicklungsteams. Diese
Foundation-Level-Qualifikation eignet sich auch für alle, die ein grundlegendes Verständnis
für das Testen von Software erwerben möchten, wie z. B. Projektmanager, Qualitätsmanager,
Product Owner, Softwareentwicklungsmanager, Systemanalytiker (Businessanalysten), IT-
Leiter und Unternehmensberater. Inhaber des Foundation-Zertifikats können höhere
Qualifikationen im Bereich Softwaretest erwerben.

0.3 Karriereweg für Tester

Das ISTQB®-Schema unterstützt Testexperten in allen Stufen ihrer Karriere und bietet ihnen
sowohl eine breite als auch eine tiefe Wissensbasis. Personen, die die ISTQB®-Zertifizierung
Foundation Level erlangt haben, sind möglicherweise auch an den Core Advanced Levels

Certified Tester
Foundation Level

Version 4.0.2 Seite 11 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

(Test Analyst, Technical Test Analyst und Test Management) und den nachfolgenden Expert
Levels (Test Management oder Improving the Test Process) interessiert. Wer sich Fähigkeiten
in der Testtätigkeit in einer agilen Softwareentwicklung aneignen möchte, könnte die
Zertifizierungen Agile Technical Tester oder Agile Test Leadership at Scale in Betracht ziehen.

Der Spezialistenstrang bietet einen tiefen Einblick in Bereiche, die spezifische Testansätze
und Testaktivitäten beinhalten (z. B. Testautomatisierung, KI-Tests, modellbasiertes Testen,
Testen mobiler Apps), die sich auf bestimmte Testbereiche beziehen (z. B. Performanztests,
Gebrauchstauglichkeitstests, Abnahmetests, Sicherheitstests) oder die das Test-Know-how
für bestimmte Branchendomänen bündeln (z. B. Automotive oder Gaming).

Aktuelle Informationen über das ISTQB®-Certified-Tester-Schema finden Sie unter
www.istqb.org oder auf den Seiten der nationalen Boards, wie z. B. www.gtb.de (Deutschland),
www.austriantestingboard.at (Österreich) oder swisstestingboard.org (Schweiz).

0.4 Geschäftlicher Nutzen

In diesem Abschnitt werden 14 geschäftliche Nutzen (Business Outcomes, BO) aufgeführt, die
von einer Person erwartet werden, die die Foundation-Level-Zertifizierung bestanden hat.

Ein im Foundation Level zertifizierter Tester kann Folgendes:

FL-BO1 Verstehen, was Testen ist und warum es nützlich ist

FL-BO2 Die grundlegenden Konzepte des Testens von Software verstehen

FL-BO3 Den Testansatz und die anzuwendenden Aktivitäten in Abhängigkeit vom Kontext
des Testens identifizieren

FL-BO4 Die Qualität der Dokumentation bewerten und verbessern

FL-BO5 Die Effektivität und Effizienz des Testens steigern

FL-BO6 Den Testprozess an den Softwareentwicklungslebenszyklus anpassen

FL-BO7 Grundsätze des Testmanagements verstehen

FL-BO8 Klare und verständliche Fehlerberichte schreiben und kommunizieren

FL-BO9 Die Faktoren, die die Prioritäten und den Aufwand für das Testen beeinflussen,
verstehen

FL-BO10 Als Teil eines funktionsübergreifenden Teams arbeiten

FL-BO11 Risiken und Vorteile der Testautomatisierung kennen

FL-BO12 Wesentliche Fähigkeiten, die für das Testen erforderlich sind, erkennen

FL-BO13 Die Auswirkungen von Risiken auf das Testen verstehen

FL-BO14 Über den Testfortschritt und die Qualität effektiv berichten

Certified Tester
Foundation Level

Version 4.0.2 Seite 12 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

0.5 Prüfbare Lernziele und kognitive Stufen des Wissens

Die Lernziele (Learning Objectives, LO) unterstützen den geschäftlichen Nutzen und dienen
zur Ausarbeitung der Prüfungen für die Zertifizierung als Certified Tester Foundation Level. Im
Allgemeinen sind alle Inhalte der Kapitel 1-6 dieses Lehrplans auf K1-Stufe prüfbar. Das heißt,
vom Prüfling kann gefordert werden, einen Schlüsselbegriff oder ein Konzept aus einem der
sechs Kapitel wiederzuerkennen, sich daran zu erinnern oder wiedergeben zu können. Die
Stufen der spezifischen Lernziele werden am Anfang jedes Kapitels genannt und wie folgt
klassifiziert:

• K1: Sich erinnern

• K2: Verstehen

• K3: Anwenden

Weitere Einzelheiten und Beispiele für Lernziele werden in Anhang 8 aufgezeigt. Alle Begriffe,
die als Schlüsselbegriffe direkt unter den Kapitelüberschriften aufgelistet sind, müssen
bekannt sein (K1), auch wenn sie nicht ausdrücklich in den Lernzielen erwähnt werden.

0.6 Die Foundation-Level-Zertifizierungsprüfung

Die Foundation-Level-Zertifizierungsprüfung basiert auf diesem Lehrplan. Die Beantwortung
der Prüfungsfragen kann die Nutzung von Inhalten aus mehr als einem Abschnitt dieses
Lehrplans erfordern. Alle Abschnitte des Lehrplans sind prüfungsrelevant, mit Ausnahme der
Einführung und der Anhänge. Standards und Bücher sind als Referenzen genannt (Kapitel 7),
ihr Inhalt ist jedoch nicht prüfungsrelevant, abgesehen von dem, was im Lehrplan selbst aus
diesen Standards und Büchern zusammengefasst ist. Siehe dazu die Dokumente “Exam
Structures and Rules” und “Exam Structure Tables”.

0.7 Akkreditierung

Ein nationales ISTQB®-Mitgliedboard kann Schulungsanbieter akkreditieren, deren Lehrmate-
rial diesem Lehrplan entspricht. Die Akkreditierungsrichtlinien können bei diesem nationalen
Board (in Deutschland: German Testing Board e. V.; in der Schweiz: Swiss Testing Board; in
Österreich: Austrian Testing Board) oder bei einer der Organisationen bezogen werden, die
die Akkreditierung im Auftrag des nationalen Boards durchführt. Eine akkreditierte Schulung
ist als konform mit diesem Lehrplan anerkannt und darf eine ISTQB®-Prüfung als Teil der
Schulung enthalten. Die Akkreditierungsrichtlinien für diesen Lehrplan folgen den allgemeinen
Akkreditierungsrichtlinien, die von der ISTQB-Arbeitsgruppe "Processes Management and
Compliance" veröffentlicht wurden.

0.8 Umgang mit Standards

Im Foundation-Level-Lehrplan wird auf Normen verwiesen (z. B. IEEE- oder ISO-Normen).
Diese Verweise dienen als Rahmen (wie die Verweise auf ISO 25010 bezüglich der

Certified Tester
Foundation Level

Version 4.0.2 Seite 13 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Qualitätsmerkmale) oder als Quelle für zusätzliche Informationen, falls der Leser dies wünscht.
Die Inhalte der Standards sind nicht prüfungsrelevant. Weitere Informationen über Normen
sind in Kapitel 7 nachlesbar.

0.9 Auf dem Laufenden bleiben

Die Softwarebranche verändert sich schnell. Um diesen Veränderungen Rechnung zu tragen
und den Beteiligten Zugang zu relevanten und aktuellen Informationen zu verschaffen, haben
die ISTQB-Arbeitsgruppen auf der Website www.istqb.org Links angelegt, die auf
unterstützende Dokumentation und Änderungen von Standards verweisen. Diese
Informationen sind im Rahmen des Foundation-Level-Lehrplans nicht prüfungsrelevant.

0.10 Detaillierungsgrad

Der Detaillierungsgrad dieses Lehrplans erlaubt international einheitliche Schulungen und
Prüfungen. Um dieses Ziel zu erreichen, enthält der Lehrplan Folgendes:

• Allgemeine Lehrziele, die die Intention des Foundation Levels beschreiben

• Eine Liste von Begriffen (Schlüsselbegriffe), an die sich die Lernenden erinnern müssen

• Lernziele für jeden Wissensbereich, die die zu erreichenden kognitiven Lernergebnisse
beschreiben

• Eine Beschreibung der wichtigsten Konzepte, einschließlich Verweisen auf anerkannte
Quellen

Der Inhalt des Lehrplans ist keine Beschreibung des gesamten Wissensgebiets
„Softwaretesten“. Er spiegelt den Detaillierungsgrad wider, der in Foundation-Level-
Schulungen abgedeckt wird. Der Schwerpunkt liegt auf Konzepten und Verfahren des Testens,
die auf alle Softwareprojekte angewendet werden können, unabhängig vom verwendeten
Softwareentwicklungslebenszyklus (SDLC).

0.11 Aufbau des Lehrplans

Es gibt sechs Kapitel mit prüfungsrelevantem Inhalt. Die Hauptüberschrift eines jeden Kapitels
gibt die Schulungszeit für das Kapitel an. Für die Unterkapitel wird keine Zeitangabe gemacht.
Für akkreditierte Schulungen fordert der Lehrplan mindestens 1135 Minuten (18 Stunden und
55 Minuten) Unterricht, die sich wie folgt auf die sechs Kapitel verteilen:

Certified Tester
Foundation Level

Version 4.0.2 Seite 14 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Kapitel 1: Grundlagen des Testens (180 Minuten)
o Der Lernende eignet sich die grundlegenden Prinzipien des Testens, die Gründe,

warum Testen notwendig ist, und was Ziele des Testens sind, an.
o Der Lernende versteht den Testprozess, die wichtigsten Testaktivitäten und

Testmittel.
o Der Lernende versteht die wesentlichen Fähigkeiten zum Testen.

• Kapitel 2: Testen während des Softwareentwicklungslebenszyklus (130 Minuten)
o Der Lernende eignet sich an, wie das Testen in verschiedene

Entwicklungsvorgehensweisen integriert wird.
o Der Lernende eignet sich die Konzepte von Test-First-Ansätzen und DevOps an.
o Der Lernende lernt die verschiedenen Teststufen, Testarten und den Wartungstest

kennen.

• Kapitel 3: Statischer Test (80 Minuten)
o Der Lernende eignet sich die Grundlagen des statischen Testens, den Feedback-

und den Reviewprozess an.

• Kapitel 4: Testanalyse und -entwurf (390 Minuten)
o Der Lernende erwirbt die Kompetenz Black-Box-, White-Box- und

erfahrungsbasierte Testverfahren anzuwenden, um Testfälle aus verschiedenen
Arbeitsergebnissen der Softwareentwicklung abzuleiten.

o Der Lernende lernt den auf Zusammenarbeit basierenden Testansatz kennen.

• Kapitel 5: Management der Testaktivitäten (335 Minuten)
o Der Lernende erwirbt die Kompetenz, wie man Tests im Allgemeinen plant und wie

man den Testaufwand schätzt.
o Der Lernende eignet sich an, wie Risiken den Testumfang beeinflussen können.
o Der Lernende lernt, wie man Testaktivitäten überwacht und steuert.
o Der Lernende eignet sich an, wie das Konfigurationsmanagement das Testen

unterstützt.
o Der Lernende lernt, wie man Fehlerzustände klar und verständlich berichtet.

• Kapitel 6: Testwerkzeuge (20 Minuten)
o Der Lernende erwirbt die Kompetenz, Testwerkzeuge zu klassifizieren und die

Risiken und Nutzen von Testautomatisierung zu verstehen.

Certified Tester
Foundation Level

Version 4.0.2 Seite 15 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

1. Grundlagen des Testens – 180 Minuten
Schlüsselbegriffe

Debugging, Fehlerwirkung, Fehlerzustand, Fehlhandlung, Grundursache, Qualität,
Qualitätssicherung, Testablauf, Testabschluss, Testanalyse, Testbasis, Testbedingung,
Testdaten, Testdurchführung, Testen, Testentwurf, Testergebnis, Testfall, Testmittel,
Testobjekt, Testplanung, Testprozess, Testrealisierung, Teststeuerung, Testüberwachung,
Testziel, Überdeckung, Validierung, Verfolgbarkeit, Verifizierung

Lernziele für Kapitel 1: Der Lernende kann ...

1.1 Was ist Testen?

FL-1.1.1 (K1) ... typische Testziele identifizieren
FL-1.1.2 (K2) ... Testen von Debugging unterscheiden

1.2 Warum ist Testen notwendig?

FL-1.2.1 (K2) ... Beispiele geben, warum Testen notwendig ist
FL-1.2.2 (K1) ... die Beziehung zwischen Testen und Qualitätssicherung wiedergeben
FL-1.2.3 (K2) ... zwischen Grundursache, Fehlhandlung, Fehlerzustand und Fehlerwirkung

unterscheiden

1.3 Grundsätze des Testens

FL-1.3.1 (K2) ... die sieben Grundsätze des Testens erklären

1.4 Testaktivitäten, Testmittel und Rollen des Testens

FL-1.4.1 (K2) ... die verschiedenen Testaktivitäten und die damit verbundenen Aufgaben
erklären

FL-1.4.2 (K2) ... die Auswirkungen des Kontexts auf den Testprozess erklären
FL-1.4.3 (K2) ... Testmittel, die die Testaktivitäten unterstützen, unterscheiden
FL-1.4.4 (K2) ... die Bedeutung der Pflege der Verfolgbarkeit erklären
FL-1.4.5 (K2) ... die verschiedenen Rollen beim Testen vergleichen

1.5 Wesentliche Kompetenzen und bewährte Praktiken beim Testen

FL-1.5.1 (K2) ... Beispiele für die allgemeinen Kompetenzen, die für das Testen erforderlich
sind, geben

FL-1.5.2 (K1) ... die Vorteile des Whole-Team-Ansatzes wiedergeben
FL-1.5.3 (K2) ... die Vor- und Nachteile des unabhängigen Testens unterscheiden

Certified Tester
Foundation Level

Version 4.0.2 Seite 16 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

1.1 Was ist Testen?

Softwaresysteme sind ein integraler Bestandteil unseres täglichen Lebens. Die meisten
Menschen haben bereits Erfahrung mit Software gemacht, die nicht wie erwartet funktioniert.
Software, die nicht ordnungsgemäß funktioniert, kann zu vielen Problemen führen, unter
anderem zu Geld-, Zeit- oder Ansehensverlust und in Extremfällen sogar zu Verletzung oder
Tod. Softwaretests bewerten die Qualität der Software und helfen, das Risiko einer
Fehlerwirkung im Betrieb zu verringern.

Das Testen von Software besteht aus einer Reihe von Aktivitäten zur Entdeckung von
Fehlerzuständen und zur Bewertung der Qualität von Arbeitsergebnissen der
Softwareentwicklung. Werden diese getestet, werden sie als Testobjekte bezeichnet. Ein weit
verbreitetes Missverständnis über das Testen ist, dass es nur aus dem Ausführen von Tests
besteht (d. h. dem Ausführen der Software und der Prüfung der Testergebnisse). Das Testen
von Software umfasst jedoch auch andere Aktivitäten und muss auf den
Softwareentwicklungslebenszyklus (Software Development Lifecycle, SDLC) abgestimmt sein
(siehe Kapitel 2).

Ein weiteres verbreitetes Missverständnis über das Testen ist, dass sich das Testen
ausschließlich auf das Verifizieren des Testobjekts konzentriert. Zwar beinhaltet Testen das
Verifizieren, d. h. das Prüfen, ob das System die spezifizierten Anforderungen erfüllt, aber
auch das Validieren, d. h. das Prüfen, ob das System die Bedürfnisse der Benutzer und
anderer Stakeholder in seiner Betriebsumgebung erfüllt.

Testen kann dynamisch oder statisch sein. Beim dynamischen Test wird die Software
ausgeführt, beim statischen Test hingegen nicht. Zum statischen Test gehören Reviews (siehe
Kapitel 3) und statische Analysen. Beim dynamischen Test werden verschiedene
Testverfahren und Testansätze verwendet, um Testfälle abzuleiten (siehe Kapitel 4).

Testen ist nicht nur eine technische Aktivität. Es muss auch richtig geplant, verwaltet,
geschätzt, überwacht und gesteuert werden (siehe Kapitel 5).

Tester verwenden Werkzeuge (siehe Kapitel 6), aber es ist wichtig, sich daran zu erinnern,
dass Testen eine weitgehend intellektuelle Aktivität ist. Das erfordert von Testern Fachwissen,
die Anwendung analytischer Fähigkeiten und den Einsatz kritischen Denkens sowie
Systemdenken (Myers 2011, Roman 2018).

Die Norm ISO/IEC/IEEE 29119-1 liefert weitere Informationen über Konzepte des
Softwaretestens.

1.1.1 Testziele

Typische Testziele sind:

• Evaluieren von Arbeitsergebnissen wie Anforderungen, User-Storys, Entwürfe und
Code

• Auslösen von Fehlerwirkungen und Finden von Fehlerzuständen

• Sicherstellen der erforderlichen Überdeckung eines Testobjekts

Certified Tester
Foundation Level

Version 4.0.2 Seite 17 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Verringern des Risikos einer unzureichenden Softwarequalität

• Verifizieren, ob spezifizierte Anforderungen erfüllt wurden

• Verifizieren, ob ein Testobjekt den vertraglichen, rechtlichen und regulatorischen
Anforderungen entspricht

• Bereitstellen von Informationen für die Stakeholder, damit diese fundierte
Entscheidungen treffen können

• Aufbauen von Vertrauen in die Qualität des Testobjekts

• Validieren, ob das Testobjekt vollständig ist und aus Sicht der Stakeholder wie erwartet
funktioniert

Testziele können je nach Kontext variieren. Zum Kontext gehören das zu testende
Arbeitsergebnis, die Teststufe, Risiken, der Softwareentwicklungslebenszyklus und Faktoren
im Zusammenhang mit dem geschäftlichen Kontext, z. B. die Unternehmensstruktur,
Wettbewerbserwägungen oder die Zeit bis zur Markteinführung.

1.1.2 Testen und Debugging

Testen und Debugging sind getrennte Aktivitäten. Testen kann Fehlerwirkungen auslösen, die
durch Fehlerzustände in der Software verursacht werden (dynamischer Test), oder direkt
Fehlerzustände im Testobjekt finden (statischer Test).

Wenn ein dynamischer Test (siehe Kapitel 4) eine Fehlerwirkung auslöst, geht es beim
Debugging darum, die Ursachen für diese Fehlerwirkung (die Fehlerzustände) zu finden, diese
zu analysieren und zu beseitigen. Der typische Debugging-Prozess umfasst in diesem Fall:

• Reproduzieren einer Fehlerwirkung

• Diagnose (den Fehlerzustand finden)

• Behebung des Fehlerzustands

Anschließende Fehlernachtests prüfen, ob das Problem durch die Korrekturen behoben
wurde. Vorzugsweise wird der Fehlernachtest von derselben Person durchgeführt, die auch
den ersten Test durchgeführt hat. Anschließende Regressionstests können ebenfalls
durchgeführt werden, um zu prüfen, ob die Korrekturen in anderen Teilen des Testobjekts
Fehlerwirkungen verursachen (für Informationen über Fehlernachtests und Regressionstests
siehe Abschnitt 2.2.3).

Wenn beim statischen Test ein Fehlerzustand festgestellt wird, geht es beim Debugging
darum, diesen zu beseitigen. Reproduktion oder Diagnose sind nicht erforderlich, da statische
Tests direkt Fehlerzustände finden und keine Fehlerwirkungen auslösen können (siehe Kapitel
3).

Certified Tester
Foundation Level

Version 4.0.2 Seite 18 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

1.2 Warum ist Testen notwendig?

Testen als eine Form der Qualitätssteuerung trägt dazu bei, die vereinbarten Testziele
innerhalb des festgelegten Umfangs sowie der Zeit-, Qualitäts- und Budgetvorgaben zu
erreichen. Der Beitrag des Testens zum Erfolg sollte nicht auf die Aktivitäten des Testteams
beschränkt sein. Jeder Stakeholder kann seine Testkompetenzen einsetzen, um das Projekt
dem Erfolg näher zu bringen. Das Testen von Komponenten, Systemen und der zugehörigen
Arbeitsergebnisse (z. B. Dokumentation) hilft bei der Ermittlung von Fehlerzuständen in der
Software.

1.2.1 Der Beitrag des Testens zum Erfolg

Testen ist ein kosteneffizientes Mittel zur Erkennung von Fehlerzuständen. Diese
Fehlerzustände können dann beseitigt werden (durch Debugging – eine Aktivität, die nicht zum
Testen gehört), so dass das Testen indirekt zu einer höheren Qualität der Testobjekte beiträgt.

Testen bietet ein Mittel zur direkten Bewertung der Qualität eines Testobjekts in verschiedenen
Phasen des SDLC. Diese Messgrößen werden als Teil einer größeren
Projektmanagementaktivität verwendet und tragen zu Entscheidungen für den Übergang zur
nächsten Phase des SDLC bei, z. B. zur Freigabeentscheidung.

Testen bietet den Benutzern eine indirekte Darstellung des Entwicklungsprojekts. Tester
stellen sicher, dass ihr Verständnis für die Bedürfnisse der Benutzer während des gesamten
Entwicklungszyklus berücksichtigt wird. Die Alternative besteht darin, eine repräsentative
Gruppe von Benutzern in das Entwicklungsprojekt einzubeziehen, was in der Regel aufgrund
der hohen Kosten und der mangelnden Verfügbarkeit geeigneter Benutzer nicht möglich ist.

Testen kann auch erforderlich sein, um vertragliche oder gesetzliche Anforderungen zu
erfüllen oder um regulatorischen Standards zu entsprechen.

1.2.2 Testen und Qualitätssicherung

Obwohl die Begriffe "Testen" und "Qualitätssicherung" (oder kurz QS) häufig synonym
verwendet werden, sind Testen und Qualitätssicherung nicht dasselbe.

Testen ist ein produktorientierter, korrigierender Ansatz, der sich auf jene Aktivitäten
konzentriert, die das Erreichen eines angemessenen Qualitätsniveaus unterstützen. Testen ist
eine der wichtigsten Formen der Qualitätssteuerung, andere sind formale Methoden
(Modellprüfung und Korrektheitsnachweis), Simulation und Prototyping.

Qualitätssicherung ist ein prozessorientierter, präventiver Ansatz, der sich auf die
Implementierung und Verbesserung von Prozessen konzentriert. Sie geht davon aus, dass ein
guter Prozess, wenn er korrekt durchgeführt wird, ein gutes Produkt hervorbringt.
Qualitätssicherung bezieht sich sowohl auf den Entwicklungs- als auch auf den Testprozess
und liegt in der Verantwortung aller Projektbeteiligten.

Testergebnisse werden beim Testen und bei der Qualitätssicherung verwendet. Beim Testen
werden sie zur Behebung von Fehlerzuständen verwendet, während sie in der

Certified Tester
Foundation Level

Version 4.0.2 Seite 19 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Qualitätssicherung Rückmeldungen darüber liefern, wie gut die Entwicklungs- und
Testprozesse funktionieren.

1.2.3 Fehlhandlungen, Fehlerzustände, Fehlerwirkungen und Grundursachen

Menschen begehen Fehlhandlungen (Irrtümer), die zu Fehlerzuständen (Defekten) führen,
was wiederum zu Fehlerwirkungen führen kann. Menschen machen aus verschiedenen
Gründen Fehlhandlungen, wie z. B. wegen Zeitdruck, Komplexität von Arbeitsergebnissen,
Prozessen, Infrastruktur oder Interaktionen, oder einfach, weil sie erschöpft sind oder nicht
ausreichend geschult wurden.

Fehlerzustände können in der Dokumentation, z. B. in einer Anforderungsspezifikation oder
einem Testskript, im Quellcode oder in einem unterstützenden Arbeitsergebnis, z. B. einer
Build-Datei, gefunden werden. Fehlerzustände in Arbeitsergebnissen, die zu einem früheren
Zeitpunkt im SDLC erstellt wurden, führen, wenn sie unentdeckt bleiben, häufig zu fehlerhaften
Arbeitsergebnissen im späteren Verlauf des Lebenszyklus. Wenn ein Fehlerzustand im Code
ausgeführt wird, kann es sein, dass das System nicht das tut, was es tun sollte, oder etwas
tut, was es nicht tun sollte, was zu einer Fehlerwirkung führt. Einige Fehlerzustände
resultieren, wenn sie ausgeführt werden, immer in einer Fehlerwirkung, während andere nur
unter bestimmten Umständen zu einer Fehlerwirkung führen, und wieder andere führen nie zu
einer Fehlerwirkung.

Fehlhandlungen und Fehlerzustände sind nicht die einzige Ursache von Fehlerwirkungen.
Fehlerwirkungen können auch durch Umweltbedingungen verursacht werden, z. B. wenn
Strahlung oder elektromagnetische Felder Fehlerzustände in der Firmware verursachen.

Eine Grundursache (root cause) ist ein wesentlicher Grund für das Auftreten eines Problems
(z. B. eine Situation, die zu einer Fehlhandlung führt). Grundursachen werden durch eine
Grundursachenanalyse ermittelt, die normalerweise durchgeführt wird, wenn eine Fehlerwir-
kung auftritt oder ein Fehlerzustand festgestellt wird. Es wird davon ausgegangen, dass
weitere ähnliche Fehlerwirkungen oder Fehlerzustände verhindert werden können oder ihre
Häufigkeit verringert werden kann, wenn die Grundursache angegangen wird, z. B. durch ihre
Beseitigung.

1.3 Grundsätze des Testens

Im Laufe der Jahre wurde eine Reihe von Grundsätzen des Testens angeregt, die allgemeine
Richtlinien für alle Tests bieten. Dieser Lehrplan beschreibt sieben solcher Grundsätze.

1. Testen zeigt das Vorhandensein, nicht die Abwesenheit von Fehlerzuständen. Testen
kann zeigen, dass Fehlerzustände im Testobjekt vorhanden sind, kann aber nicht beweisen,
dass es keine Fehlerzustände gibt (Buxton 1970). Testen verringert die Wahrscheinlichkeit,
dass Fehlerzustände im Testobjekt unentdeckt bleiben, aber selbst, wenn keine
Fehlerzustände gefunden werden, kann Testen nicht die Korrektheit des Testobjekts
beweisen.

2. Vollständiges Testen ist unmöglich. Es ist nicht möglich, alles zu testen, außer in trivialen
Fällen (Manna 1978). Anstatt zu versuchen, vollständig zu testen, sollten Testverfahren (siehe

Certified Tester
Foundation Level

Version 4.0.2 Seite 20 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kapitel 4), Priorisierung von Testfällen (siehe Abschnitt 5.1.5) und risikobasiertes Testen
(siehe Abschnitt 5.2) angewendet werden, um den Testaufwand gezielt einzusetzen.

3. Frühes Testen spart Zeit und Geld. Fehlerzustände, die in einem frühen Stadium des
Prozesses beseitigt werden, verursachen keine weiteren Fehlerzustände in abgeleiteten
Arbeitsergebnissen. Die Qualitätskosten werden gesenkt, da später im SDLC weniger
Fehlerwirkungen auftreten (Boehm 1981). Um Fehlerzustände frühzeitig zu finden, sollte
sowohl mit statischen Tests (siehe Kapitel 3) als auch mit dynamischen Tests (siehe
Kapitel 4) so früh wie möglich begonnen werden.

4. Fehlerzustände treten gehäuft auf. Eine kleine Anzahl von Komponenten eines Systems
enthält in der Regel die meisten der entdeckten Fehlerzustände oder ist für die meisten
Fehlerwirkungen im Betrieb verantwortlich (Enders 1975). Dieses Phänomen ist eine
Veranschaulichung des Pareto-Prinzips. Vorausgesagte Anhäufungen von Fehlerzuständen
und die tatsächlich beobachteten Fehlerzustände im Test oder im Betrieb sind ein wichtiger
Beitrag für den risikobasierten Test (siehe Abschnitt 5.2).

5. Tests nutzen sich ab. Wenn dieselben Tests viele Male wiederholt werden, werden sie bei
der Erkennung neuer Fehlerzustände zunehmend ineffektiv (Beizer 1990). Um diesen Effekt
zu überwinden, müssen bestehende Tests und Testdaten möglicherweise modifiziert und neue
Tests geschrieben werden. In einigen Fällen kann die Wiederholung der gleichen Tests jedoch
zu einem positiven Ergebnis führen, z. B. bei automatisierten Regressionstests (siehe
Abschnitt 2.2.3).

6. Testen ist kontextabhängig. Es gibt keinen universell anwendbaren Ansatz für das Testen.
Das Testen wird in verschiedenen Kontexten unterschiedlich praktiziert (Kaner 2011).

7. Trugschluss: „Keine Fehler“ bedeutet ein brauchbares System. Es ist ein Irrtum (d. h.
ein Trugschluss) zu erwarten, dass das Verifizieren von Software den Erfolg eines Systems
sicherstellt. Das gründliche Testen aller spezifizierten Anforderungen und das Beheben aller
gefundenen Fehlerzustände könnte immer noch ein System hervorbringen, das die
Bedürfnisse und Erwartungen der Benutzer nicht erfüllt, das nicht dazu beiträgt, die
Geschäftsziele des Kunden zu erreichen, und das im Vergleich zu anderen konkurrierenden
Systemen minderwertig ist. Neben der Verifizierung sollte auch eine Validierung durchgeführt
werden (Boehm 1981).

1.4 Testaktivitäten, Testmittel und Rollen des Testens

Testen ist kontextabhängig, aber auf einem hohen Abstraktionsniveau gibt es Gruppen von
Testaktivitäten, ohne die die Wahrscheinlichkeit, dass die Testziele erreicht werden können,
geringer ist. Diese Gruppen von Testaktivitäten bilden einen Testprozess. Der Testprozess
kann auf der Grundlage verschiedener Faktoren auf eine bestimmte Situation zugeschnitten
werden. Welche Testaktivitäten zu diesem Testprozess gehören, wie sie durchgeführt werden
und wann sie stattfinden, wird normalerweise im Rahmen der Testplanung für die jeweilige
Situation entschieden (siehe Abschnitt 5.1).

In den folgenden Abschnitten werden die allgemeinen Aspekte dieses Testprozesses in Bezug
auf die Testaktivitäten und -aufgaben, der Einfluss des Kontexts, die Testmittel, die
Verfolgbarkeit zwischen Testbasis und Testmitteln sowie die Rollen im Testen beschrieben.

Certified Tester
Foundation Level

Version 4.0.2 Seite 21 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Die Norm ISO/IEC/IEEE 29119-2 enthält weitere Informationen über Testprozesse.

1.4.1 Testaktivitäten und -aufgaben

Ein Testprozess besteht in der Regel aus den unten beschriebenen Hauptgruppen von
Aktivitäten. Obwohl viele dieser Aktivitäten einer logischen Abfolge zu folgen scheinen, werden
sie oft iterativ oder parallel durchgeführt. Diese Testaktivitäten müssen in der Regel auf das
System und das Projekt zugeschnitten werden.

Die Testplanung besteht darin, die Testziele zu definieren und dann eine
Testvorgehensweise auszuwählen, mit der die Testziele innerhalb der durch den
Gesamtkontext auferlegten Randbedingungen am besten erreicht werden können. Die
Testplanung wird in Abschnitt 5.1 näher erläutert.

Testüberwachung und Teststeuerung. Die Testüberwachung umfasst die laufende
Überprüfung aller Testaktivitäten und den Vergleich des tatsächlichen Fortschritts mit dem
Plan. Bei der Teststeuerung werden die erforderlichen Korrekturmaßnahmen ergriffen, um die
Testziele zu erreichen. Testüberwachung und Teststeuerung werden in Abschnitt 5.3 näher
erläutert.

Die Testanalyse umfasst die Analyse der Testbasis, um testbare Merkmale zu identifizieren.
Die zugehörigen Testbedingungen werden bestimmt und priorisiert, wobei die damit
verbundenen Risiken und Risikostufen (siehe Abschnitt Fehler! Verweisquelle konnte nicht g
efunden werden.) berücksichtigt werden. Die Testbasis und das Testobjekt werden auch
geprüft, um darin enthaltene Fehlerzustände zu identifizieren und ihre Testbarkeit zu
beurteilen. Die Testanalyse wird häufig durch den Einsatz von Testverfahren unterstützt (siehe
Kapitel 4). Die Testanalyse beantwortet die Frage "Was soll getestet werden?" in Form von
messbaren Überdeckungskriterien.

Der Testentwurf umfasst die Ausarbeitung der Testbedingungen zu Testfällen und anderen
Testmitteln (z. B. Test-Chartas). Dabei werden häufig Überdeckungselemente identifiziert, die
als Leitfaden für die Spezifizierung der Testfalleingaben dienen. Testverfahren (siehe Kapitel
4) können zur Unterstützung dieser Aktivität eingesetzt werden. Zum Testentwurf gehören
auch die Definition von Anforderungen an die Testdaten, der Entwurf der Testumgebung und
die Identifizierung der benötigten Infrastruktur und Werkzeuge. Der Testentwurf beantwortet
die Frage "Wie soll getestet werden?".

Die Testrealisierung umfasst die Erstellung oder Beschaffung der für die Testdurchführung
erforderlichen Testmittel (z. B. Testdaten). Testfälle können in Testabläufen organisiert
werden, die wiederum oft zu Testsuiten zusammengestellt werden. Es werden manuelle und
automatisierte Testskripte erstellt. Die Testabläufe werden priorisiert und in einem
Testausführungsplan angeordnet, um eine effiziente Testdurchführung zu gewährleisten
(siehe Abschnitt 5.1.5). Die Testumgebung wird aufgebaut und ihre korrekte Einrichtung
verifiziert.

Die Testdurchführung umfasst die Ausführung der Tests gemäß dem Testausführungsplan
(Testläufe). Tests können dabei manuell oder automatisiert ausgeführt werden. Die
Testdurchführung kann viele Formen annehmen, wie kontinuierlichen Test oder Testsitzungen
in Paaren. Die Istergebnisse des Tests werden mit den erwarteten Ergebnissen verglichen.

Certified Tester
Foundation Level

Version 4.0.2 Seite 22 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Die Testergebnisse werden protokolliert. Abweichungen zwischen tatsächlichem und
erwartetem Ergebnis werden analysiert, um ihre wahrscheinlichen Ursachen zu ermitteln.
Diese Analyse ermöglicht eine Berichterstattung über die Abweichung auf der Grundlage der
beobachteten Fehlerwirkungen (siehe Abschnitt 5.5).

Der Testabschluss findet in der Regel zu Projektmeilensteinen statt (z. B. Freigabe, Ende der
Iteration, Abschluss der Teststufe). Für alle nicht behobenen Fehlerzustände werden
Änderungsanträge (Change Requests) oder Produkt-Backlog- Einträge erstellt. Alle Testmittel,
die für die Zukunft nützlich sein könnten, werden identifiziert und archiviert oder an die entspre-
chenden Teams übergeben. Die Testumgebung wird in einen vereinbarten Zustand gebracht.
Die Testaktivitäten werden analysiert, um Lessons Learned und Verbesserungen für zukünf-
tige Iterationen, Releases oder Projekte zu ermitteln (siehe Abschnitt 2.1.6). Es wird ein
Testabschlussbericht erstellt und an die Stakeholder kommuniziert.

1.4.2 Testprozess im Kontext

Testen wird nicht isoliert durchgeführt, sondern alle Testaktivitäten sind ein integraler
Bestandteil der Entwicklungsprozesse innerhalb einer Organisation. Das Testen wird auch von
den Stakeholdern finanziert und soll letztendlich dazu beitragen, die Geschäftsanforderungen
der Stakeholder zu erfüllen. Daher hängt die Art und Weise, wie das Testen durchgeführt wird,
von einer Reihe von Kontextfaktoren ab, darunter:

• Stakeholder (Bedürfnisse, Erwartungen, Anforderungen, Bereitschaft zur Zusammen-
arbeit usw.)

• Teammitglieder (Kompetenz, Wissen, Erfahrungsstand, Verfügbarkeit,
Schulungsbedarf usw.)

• Unternehmensbereich (Kritikalität des Testobjekts, identifizierte Risiken,
Marktbedürfnisse, spezifische gesetzliche Vorschriften usw.)

• Technische Faktoren (Art der Software, Produktarchitektur, verwendete Technologie
usw.)

• Projektbedingte Randbedingungen (Umfang, Zeit, Budget, Ressourcen usw.)
• Organisatorische Faktoren (Organisationsstruktur, bestehende Richtlinien,

angewandte Praktiken usw.)
• Softwareentwicklungslebenszyklus (technologische Praktiken,

Entwicklungsmethoden usw.)
• Werkzeuge (Verfügbarkeit, Gebrauchstauglichkeit, Konformität usw.)

Diese Faktoren wirken sich auf viele testbezogene Aspekte aus, darunter: Teststrategie,
verwendete Testverfahren, Grad der Testautomatisierung, geforderte Überdeckung,
Detaillierungsgrad der Testmittel, Testberichterstattung usw.

1.4.3 Testmittel

Testmittel werden als Arbeitsergebnisse aus den in Abschnitt 1.4.1 beschriebenen
Testaktivitäten erstellt. Es gibt erhebliche Unterschiede in der Art und Weise, wie verschiedene
Organisationen ihre Arbeitsergebnisse erstellen, gestalten, benennen, organisieren und
verwalten. Ein ordnungsgemäßes Konfigurationsmanagement (siehe Abschnitt 5.4)

Certified Tester
Foundation Level

Version 4.0.2 Seite 23 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

gewährleistet die Konsistenz und Integrität der Arbeitsergebnisse. Die folgende Liste der
Arbeitsergebnisse erhebt keinen Anspruch auf Vollständigkeit:

• Zu den Arbeitsergebnissen der Testplanung gehören: Testkonzept, Testzeitplan,
Risikoverzeichnis sowie Eingangskriterien und Endekriterien (siehe Abschnitt 5.1). Das
Risikoverzeichnis ist eine Liste von Risiken mit ihrer jeweiligen
Eintrittswahrscheinlichkeit, ihrem Schadensausmaß und Informationen zur
Risikominderung (siehe Abschnitt 5.2.4). Testzeitplan, Risikoverzeichnis sowie
Eingangskriterien und Endekriterien sind häufig Teil des Testkonzepts.

• Zu den Arbeitsergebnissen der Testüberwachung und Teststeuerung gehören:
Testfortschrittsberichte (siehe Abschnitt 5.3.2), Dokumentation der
Steuerungsmaßnahmen (siehe Abschnitt 5.3) und Informationen über Risiken (siehe
Abschnitt 5.2).

• Zu den Arbeitsergebnissen der Testanalyse gehören: (priorisierte) Testbedingun-
gen (z. B. Akzeptanzkriterien , siehe Abschnitt 4.5.2) und Fehlerberichte über
Fehlerzustände in der Testbasis (falls nicht direkt behoben).

• Zu den Arbeitsergebnissen des Testentwurfs gehören: (priorisierte) Testfälle, Test-
Chartas, Überdeckungselemente, Anforderungen an Testdaten und an
Testumgebungen.

• Zu den Arbeitsergebnissen der Testrealisierung gehören: Testabläufe, manuelle
und automatisierte Testskripte, Testsuiten, Testdaten, Testausführungspläne und
Bestandteile der Testumgebung. Beispiele für Bestandteile der Testumgebung sind:
Platzhalter, Treiber, Simulatoren und Dienst-Virtualisierungen (service virtualizations).

• Zu den Arbeitsergebnissen der Testdurchführung gehören: Testprotokolle und
Fehlerberichte (siehe Abschnitt 5.5).

• Zu den Arbeitsergebnissen des Testabschlusses gehören: Testabschlussberichte
(siehe Abschnitt 5.3.2), Maßnahmen zur Verbesserung nachfolgender Projekte oder
Iterationen, dokumentierte Lessons Learned und Änderungsanträge (z. B. als
Elemente des Produkt-Backlogs).

1.4.4 Verfolgbarkeit zwischen der Testbasis und den Testmitteln

Für eine effektive Testüberwachung und Teststeuerung ist es wichtig, während des gesamten
Testprozesses eine Verfolgbarkeit zwischen den Bestandteilen der Testbasis, den mit diesen
Bestandteilen verbundenen Testmitteln (z. B. Testbedingungen, Risiken, Testfälle), den
Testergebnissen und den Fehlerzuständen herzustellen und zu pflegen.

Eine genaue Verfolgbarkeit unterstützt die Bewertung der Überdeckung, daher ist es sehr
nützlich, wenn in der Testbasis messbare Überdeckungskriterien definiert sind. Die
Überdeckungskriterien können als wichtige Key-Performance-Indikatoren (KPIs) dienen, um
die Aktivitäten zu steuern, die zeigen, inwieweit die Testziele erreicht wurden (siehe Abschnitt
1.1.1). Zum Beispiel:

• Durch die Verfolgbarkeit von Testfällen zu Anforderungen kann überprüft werden, ob
die Anforderungen durch Testfälle überdeckt werden.

• Durch die Verfolgbarkeit von Testergebnissen zu Risiken kann das Ausmaß des
Restrisikos eines Testobjekts bewertet werden.

Certified Tester
Foundation Level

Version 4.0.2 Seite 24 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Neben der Bewertung der Überdeckung ermöglicht eine gute Verfolgbarkeit die Ermittlung der
Auswirkungen von Änderungen, erleichtert Audits und hilft bei der Erfüllung von IT-
Governance-Kriterien. Eine gute Verfolgbarkeit macht auch Testfortschrittsberichte und
Testabschlussberichte leichter verständlich, indem sie den Status der Bestandteile der
Testbasis enthalten. Dies kann auch dabei helfen, den Stakeholdern die technischen Aspekte
des Testens auf verständliche Weise zu vermitteln. Die Verfolgbarkeit liefert Informationen zur
Bewertung der Produktqualität, der Prozessfähigkeit und des Projektfortschritts im Vergleich
zu den Unternehmenszielen.

1.4.5 Rollen des Testens

In diesem Lehrplan werden zwei Hauptrollen des Testens behandelt: eine Rolle des
Testmanagements und eine Rolle des Testens. Die Aktivitäten und Aufgaben, die diesen
beiden Rollen zugewiesen werden, hängen von Faktoren wie dem Projekt- und
Produktkontext, den Kompetenzen der Personen, die diese Rollen innehaben, und der
Organisation ab.

Die Rolle des Testmanagements übernimmt die Gesamtverantwortung für den Testprozess,
das Testteam und die Leitung der Testaktivitäten. Die Rolle des Testmanagements
konzentriert sich hauptsächlich auf die Aktivitäten der Testplanung, Testüberwachung,
Teststeuerung sowie des Testabschlusses. Die Art und Weise, wie die Rolle des
Testmanagements ausgeübt wird, variiert je nach Kontext. Bei der agilen Softwareentwicklung
beispielsweise können einige der Aufgaben des Testmanagements vom agilen Team
übernommen werden. Aufgaben, die sich über mehrere Teams oder die gesamte Organisation
erstrecken, können von Testmanagern außerhalb des Entwicklungsteams übernommen
werden.

Die Rolle des Testens übernimmt die Gesamtverantwortung für den operativen Aspekt des
Testens. Die Rolle des Testens konzentriert sich hauptsächlich auf die Aktivitäten der
Testanalyse, des Testentwurfs, der Testrealisierung und der Testdurchführung.

Diese Rollen können von verschiedenen Personen zu verschiedenen Zeiten übernommen
werden. Die Rolle des Testmanagements kann zum Beispiel von einem Teamleiter, einem
Testmanager, einem Entwicklungsleiter usw. übernommen werden. Es ist auch möglich, dass
eine Person gleichzeitig die Rollen des Testens und des Testmanagements übernimmt.

1.5 Wesentliche Kompetenzen und bewährte Praktiken beim Testen

Kompetenz ist die Fähigkeit, etwas gut zu machen, die sich aus dem Wissen, der Übung und
der Eignung einer Person ergibt. Gute Tester sollten über einige wesentliche Kompetenzen
verfügen, um ihre Arbeit gut zu machen. Gute Tester sollten effektive Teamplayer sein und in
der Lage sein, Tests mit verschiedenen Graden an Unabhängigkeit durchzuführen.

1.5.1 Allgemeine Kompetenzen, die für das Testen erforderlich sind

Die folgenden Kompetenzen sind zwar überwiegend allgemeiner Art, aber für Tester
besonders wichtig:

Certified Tester
Foundation Level

Version 4.0.2 Seite 25 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Testwissen (zur Steigerung der Effektivität des Testens, z. B. durch den Einsatz von
Testverfahren)

• Gründlichkeit, Sorgfalt, Neugier, Detailgenauigkeit, methodisches Vorgehen (um
Fehlerzustände zu erkennen, insbesondere solche, die schwer zu finden sind)

• Gute Kommunikationsfähigkeit, aktives Zuhören, Teamfähigkeit (um mit allen
Stakeholdern effektiv zu interagieren, Informationen an andere weiterzugeben,
verstanden zu werden und Fehlerzustände zu berichten und zu diskutieren)

• Analytisches Denken, kritisches Denken, Kreativität (zur Steigerung der Effektivität des
Testens)

• Technische Kenntnisse (um die Effizienz des Testens zu steigern, z. B. durch den
Einsatz geeigneter Testwerkzeuge)

• Wissen in der Anwendungsdomäne (um Endanwender/Fachbereichsvertreter zu
verstehen und mit ihnen kommunizieren zu können)

Tester sind oft die Überbringer schlechter Nachrichten. Es ist ein allgemeiner menschlicher
Charakterzug, den Überbringer schlechter Nachrichten zu verurteilen. Daher ist
Kommunikationsfähigkeit für Tester von entscheidender Bedeutung. Die Kommunikation von
Testergebnissen kann als Kritik an dem Produkt und seinem Autor aufgefasst werden.
Bestätigungsfehler (Voreingenommenheit) können dazu führen, dass es schwierig ist,
Informationen zu akzeptieren, die nicht mit den bereits bestehenden Überzeugungen
übereinstimmen. Manche Menschen empfinden das Testen als eine destruktive Aktivität,
obwohl es in hohem Maße zum Projekterfolg und zur Qualität des Produkts beiträgt. Um diese
Sichtweise zu verbessern, sollten Informationen über Fehlerzustände und Fehlerwirkungen
auf konstruktive Weise kommuniziert werden.

1.5.2 Whole-Team-Ansatz (Whole Team Approach)

Eine der wichtigsten Kompetenzen eines Testers ist die Fähigkeit, effektiv im Team zu arbeiten
und einen positiven Beitrag zu den Teamzielen zu leisten. Der Whole-Team-Ansatz – eine aus
dem Extreme Programming stammende Praxis (siehe Abschnitt 2.1) – baut auf dieser
Fähigkeit auf.

Beim Whole-Team-Ansatz kann jedes Teammitglied, das über die erforderlichen
Kompetenzen verfügt, jede Aufgabe ausführen, und jeder ist für die Qualität verantwortlich.
Die Teammitglieder teilen sich einen gemeinsamen Arbeitsbereich (physisch oder virtuell), da
der gemeinsame Standort die Kommunikation und Interaktion erleichtert. Der Whole-Team-
Ansatz verbessert die Teamdynamik, fördert die Kommunikation und Zusammenarbeit
innerhalb des Teams und schafft Synergien, da die verschiedenen Kompetenzen innerhalb
des Teams zum Nutzen des Projekts eingesetzt werden.

Tester arbeiten eng mit anderen Teammitgliedern zusammen, um sicherzustellen, dass die
gewünschte Qualität erreicht wird. Dazu gehört die Zusammenarbeit mit
Fachbereichsvertretern, um sie bei der Erstellung geeigneter Abnahmetests zu unterstützen,
und die Zusammenarbeit mit Entwicklern, um die Teststrategie abzustimmen und über
Ansätze der Testautomatisierung zu entscheiden. So können Tester ihr Wissen über das

Certified Tester
Foundation Level

Version 4.0.2 Seite 26 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Testen an andere Teammitglieder weitergeben und die Entwicklung des Produkts positiv
beeinflussen.

Je nach Kontext ist der Whole-Team-Ansatz nicht immer angemessen. In einigen Situationen,
wie z. B. in sicherheitskritischen Bereichen, kann ein hohes Maß an Unabhängigkeit des
Testens erforderlich sein.

1.5.3 Unabhängigkeit des Testens

Ein gewisser Grad an Unabhängigkeit macht den Tester effektiver bei der Fehlerfindung, da
sich die Voreingenommenheit (kognitive Verzerrungen) zwischen Autor und Tester
unterscheidet (vgl. Salman 2016). Unabhängigkeit ist jedoch kein Ersatz für Nähe zum
System, z. B. können Entwickler viele Fehlerzustände in ihrem eigenen Code effizient finden.

Arbeitsergebnisse können von ihrem Autor (keine Unabhängigkeit), von den Kollegen des
Autors aus demselben Team (etwas Unabhängigkeit), von Testern außerhalb des Teams des
Autors, aber innerhalb der Organisation (hohe Unabhängigkeit), oder von Testern außerhalb
der Organisation (sehr hohe Unabhängigkeit) getestet werden. Bei den meisten Projekten ist
es in der Regel am besten, das Testen mit mehreren Unabhängigkeitsstufen durchzuführen
(z. B. Entwickler, die Komponententests und Komponentenintegrationstests durchführen, ein
Testteam, das Systemtests und Systemintegrationstests durchführt, und
Fachbereichsvertreter, die Abnahmetests durchführen).

Der Hauptvorteil des unabhängigen Testens besteht darin, dass unabhängige Tester
wahrscheinlich andere Arten von Fehlerwirkungen und Fehlerzuständen erkennen als
Entwickler, aufgrund ihres unterschiedlichen Hintergrunds, ihrer technischen Perspektive und
der Voreingenommenheit der Entwickler. Außerdem kann ein unabhängiger Tester die
Annahmen, die von den Stakeholdern während der Spezifikation und Implementierung des
Systems gemacht wurden, überprüfen, in Frage stellen oder widerlegen.

Allerdings gibt es auch einige Nachteile. Unabhängige Tester können vom Entwicklungsteam
isoliert sein, was zu mangelnder Zusammenarbeit, Kommunikationsproblemen oder einer
gegnerischen Beziehung mit dem Entwicklungsteam führen kann. Die Entwickler verlieren
möglicherweise das Gefühl der Verantwortung für die Qualität. Unabhängige Tester können
als Engpass angesehen oder für Verzögerungen bei der Freigabe verantwortlich gemacht
werden.

Certified Tester
Foundation Level

Version 4.0.2 Seite 27 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

2. Testen während des Softwareentwicklungslebenszyklus –
130 Minuten

Schlüsselbegriffe

Abnahmetest, Black-Box-Test, Fehlernachtest, funktionaler Test, Integrationstest,
Komponentenintegrationstest, Komponententest, nicht-funktionaler Test, Regressionstest,
Shift-Left, Systemintegrationstest, Systemtest, Testart, Testobjekt, Teststufe, Wartungstest,
White-Box-Test

Lernziele für Kapitel 2: Der Lernende kann ...

2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus

FL-2.1.1 (K2) ... die Auswirkungen des gewählten Softwareentwicklungslebenszyklus auf das
Testen erklären

FL-2.1.2 (K1) ... gute Praktiken für das Testen, die für alle
Softwareentwicklungslebenszyklen gelten, wiedergeben

FL-2.1.3 (K1) ... die Beispiele für Test-First-Ansätze in der Entwicklung wiedergeben
FL-2.1.4 (K2) ... die möglichen Auswirkungen von DevOps auf das Testen zusammenfassen
FL-2.1.5 (K2) ... Shift-Left erklären
FL-2.1.6 (K2) ... den Einsatz von Retrospektiven als Mechanismus zur Prozessverbesserung

erklären

2.2 Teststufen und Testarten

FL-2.2.1 (K2) ... die verschiedenen Teststufen unterscheiden
FL-2.2.2 (K2) ... die verschiedenen Testarten unterscheiden
FL-2.2.3 (K2) ... Fehlernachtests von Regressionstests unterscheiden

2.3 Wartungstest

FL-2.3.1 (K2) ... den Wartungstest und dessen Auslöser zusammenfassen

Certified Tester
Foundation Level

Version 4.0.2 Seite 28 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus (SDLC)

Ein Modell des SDLC (Software Development Lifecycle) ist eine abstrakte, übergeordnete
Darstellung des Softwareentwicklungsprozesses. Ein SDLC-Modell definiert, wie innerhalb
des Prozesses verschiedene Entwicklungsphasen und Arten von Aktivitäten logisch und
chronologisch zueinander in Beziehung stehen. Beispiele für SDLC-Modelle sind: sequenzielle
Entwicklungsmodelle (z. B. Wasserfallmodell, V-Modell), iterative Entwicklungsmodelle (z. B.
Spiralmodell, Prototyping) und inkrementelle Entwicklungsmodelle (z. B. Unified Process).

Einige Aktivitäten innerhalb von Softwareentwicklungsprozessen können auch durch detaillier-
tere Softwareentwicklungsmethoden und agile Praktiken beschrieben werden. Beispiele
hierfür sind: abnahmetestgetriebene Entwicklung (Acceptance Test-Driven Development,
ATDD), verhaltensgetriebene Entwicklung (Behavior-Driven Development, BDD),
domänengesteuertes Design (Domain-Driven Design, DDD), Extreme Programming (XP),
Feature-getriebene Entwicklung (Feature-Driven Development, FDD), Kanban, Lean IT,
Scrum und testgetriebene Entwicklung (Test-Driven Development, TDD).

2.1.1 Auswirkungen des Softwareentwicklungslebenszyklus auf das Testen

Testen muss an den SDLC angepasst werden, um erfolgreich zu sein. Die Auswahl des SDLC
hat Auswirkungen auf:

• Umfang und Zeitpunkt der Testaktivitäten (z. B. Teststufen und Testarten)

• Detaillierungsgrad der Testdokumentation

• Wahl der Testverfahren und des Testansatzes

• Umfang der Testautomatisierung

• Rolle und Aufgaben eines Testers

In sequenziellen Entwicklungsmodellen sind Tester in den Anfangsphasen in der Regel an den
Reviews der Anforderungen, der Testanalyse und dem Testentwurf beteiligt. Der ausführbare
Code wird normalerweise in den späteren Phasen erstellt, so dass dynamische Tests nicht in
den frühen Phasen des SDLC durchgeführt werden können.

Bei einigen iterativen Entwicklungsmodellen und inkrementellen Entwicklungsmodellen wird
davon ausgegangen, dass jede Iteration einen funktionierenden Prototyp oder ein Inkrement
des Produkts liefert. Dies impliziert, dass in jeder Iteration sowohl statische Tests als auch
dynamische Tests auf allen Teststufen durchgeführt werden können. Die häufige Lieferung
von Inkrementen erfordert eine schnelle Rückmeldung und umfangreiche Regressionstests.

Bei der agilen Softwareentwicklung wird davon ausgegangen, dass sich während des
gesamten Projekts Änderungen ergeben können. Daher werden in agilen Projekten eine
schlanke Dokumentation der Arbeitsergebnisse und eine umfassende Testautomatisierung
bevorzugt, um Regressionstests zu erleichtern. Außerdem kann der Großteil der manuellen
Tests mit erfahrungsbasierten Testverfahren durchgeführt werden (siehe Abschnitt 4.4), die
keine umfangreiche Testanalyse und keinen ausführlichen Testentwurf erfordern.

Certified Tester
Foundation Level

Version 4.0.2 Seite 29 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

2.1.2 Softwareentwicklungslebenszyklus und gute Praktiken für das Testen

Zu den guten Testpraktiken gehören, unabhängig vom gewählten SDLC-Modell, die folgenden
Praktiken:

• Für jede Softwareentwicklungsaktivität gibt es eine entsprechende Testaktivität, so
dass alle Entwicklungsaktivitäten der Qualitätssteuerung unterliegen.

• Unterschiedliche Teststufen (siehe Abschnitt 2.2.1) haben spezifische und
unterschiedliche Testziele, so dass der jeweilige Test angemessen und entsprechend
umfassend ist und Redundanzen vermieden werden.

• Die Testanalyse und der Testentwurf für eine bestimmte Teststufe beginnen bereits in
der entsprechenden Entwicklungsphase des SDLC, so dass der Test den Grundsatz
des frühen Testens (siehe Abschnitt 1.3) einhalten kann.

• Tester werden in das Review von Arbeitsergebnissen einbezogen, sobald Entwürfe
dieser Arbeitsergebnisse verfügbar sind, so dass frühes Testen und die Fehlerentde-
ckung Shift-Left unterstützen können (siehe Abschnitt 2.1.5).

2.1.3 Testen als Treiber für die Softwareentwicklung

TDD, ATDD und BDD sind ähnliche Entwicklungsansätze, bei denen Tests als Mittel zur
Lenkung der Entwicklung definiert werden. Jeder dieser Ansätze setzt das Prinzip des frühen
Testens um (siehe Abschnitt 1.3) und folgt Shift-Left (siehe Abschnitt 2.1.5), da die Tests
definiert werden, bevor der Code geschrieben wird. Sie unterstützen ein iteratives Ent-
wicklungsmodell. Diese Ansätze werden wie folgt charakterisiert:

Testgetriebene Entwicklung (TDD):

• Lenkt die Codierung durch Testfälle (unter Verzicht auf einen umfangreichen
Softwareentwurf) (Beck 2003).

• Zuerst werden Tests geschrieben, dann wird der Code geschrieben, um die Tests zu
erfüllen, und dann werden Tests und Code überarbeitet (Refactoring).

Abnahmetestgetriebene Entwicklung (ATDD) (siehe Abschnitt 4.5.3):

• Leitet Tests aus Akzeptanzkriterien als Teil des Systementwurfs ab (Gärtner 2011).

• Tests werden geschrieben, bevor der Teil der Anwendung entwickelt wird, der die
Tests erfüllt.

Verhaltensgetriebene Entwicklung (Behavior-Driven Development, BDD):

• Drückt das gewünschte Verhalten einer Anwendung mit Testfällen aus, die in einer
einfachen, natürlichsprachlichen Form geschrieben und die von Stakeholdern leicht zu
verstehen sind – üblicherweise unter Verwendung des Gegeben/Wenn/Dann-Formats
(Given/When/Then) (Chelimsky 2010).

• Die Testfälle sollten dann automatisch in ausführbare Tests übersetzt werden.

Certified Tester
Foundation Level

Version 4.0.2 Seite 30 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Um die Codequalität bei zukünftigen Anpassungen/Umgestaltungen (Refactoring)
sicherzustellen, können bei allen oben genannten Ansätzen die Tests als automatisierte Tests
weiterverwendet werden.

2.1.4 DevOps und Testen

DevOps ist ein organisatorischer Ansatz, der darauf abzielt, Synergien zu schaffen, indem
Entwicklung (einschließlich Testen) und Betrieb zusammenarbeiten, um eine Reihe von
gemeinsamen Zielen zu erreichen. DevOps erfordert einen Kulturwandel innerhalb eines
Unternehmens, um die Kluft zwischen Entwicklung (einschließlich Testen) und Betrieb zu
überbrücken und gleichzeitig ihre jeweilige Aufgabe gleichwertig zu behandeln. DevOps
fördert Teamautonomie, schnelle Rückmeldungen, integrierte Werkzeugketten und technische
Praktiken wie kontinuierliche Integration (Continuous Integration, CI) und kontinuierliche
Auslieferung (Continuous Delivery, CD). Dies ermöglicht es den Teams, qualitativ
hochwertigen Code über eine DevOps-Auslieferungskette (Delivery Pipeline) schneller zu
erstellen, zu testen und freizugeben (Kim 2016).

Aus Sicht des Testens gibt es unter anderem folgende Vorteile von DevOps:

• Schnelle Rückmeldung über die Codequalität und ob sich Änderungen nachteilig auf
den bestehenden Code auswirken.

• CI fördert Shift-Left beim Testen (siehe Abschnitt 2.1.5), indem Entwickler dazu
angehalten werden, qualitativ hochwertigen Code zusammen mit Komponententests
und statischer Analyse bereitzustellen.

• Automatisierte Prozesse wie CI/CD werden gefördert, was den Aufbau stabiler
Testumgebungen erleichtert.

• Die Sichtbarkeit auf nicht-funktionaler Qualitätsmerkmale nimmt zu (z. B. Performanz,
Zuverlässigkeit).

• Automatisierung durch eine Auslieferungskette reduziert den Bedarf an sich
wiederholenden manuellen Tests.

• Das Risiko einer Regression wird durch den Umfang und die Bandbreite der
automatisierten Regressionstests minimiert.

DevOps ist nicht ohne Risiken und Herausforderungen, dazu gehören:

• Die DevOps-Auslieferungskette muss definiert und etabliert werden.

• CI/CD-Werkzeuge müssen eingeführt und gewartet werden.

• Die Testautomatisierung erfordert zusätzliche Ressourcen und kann schwierig
einzurichten und zu warten sein.

Obwohl DevOps ein hohes Maß an automatisierten Tests mit sich bringt, sind manuelle Tests
– insbesondere aus Benutzerperspektive – weiterhin erforderlich.

Certified Tester
Foundation Level

Version 4.0.2 Seite 31 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

2.1.5 Shift-Left

Das Prinzip des frühen Testens (siehe Abschnitt 1.3) wird manchmal auch als Shift-Left
bezeichnet, da es sich um einen Ansatz handelt, bei dem Testen zu einem früheren Zeitpunkt
im SDLC erfolgt. Shift-Left bedeutet grundsätzlich, dass das Testen früher beginnen sollte,
z. B. nicht erst, wenn der Code implementiert ist oder die Komponenten integriert sind, aber
nicht, dass das Testen später im SDLC vernachlässigt werden sollte.

Es gibt einige bewährte Verfahren, die veranschaulichen, wie ein "Shift-Left" beim Testen
erreicht werden kann, dazu gehören:

• Review der Spezifikation aus der Sicht der Tester. Diese Review-Aktivitäten zu
Spezifikationen finden oft potenzielle Fehlerzustände, wie Mehrdeutigkeiten,
Unvollständigkeit und Inkonsistenzen.

• Schreiben von Testfällen, bevor der Code geschrieben wird, und Ausführen des Codes
in einem Testrahmen während der Coderealisierung.

• Verwendung von CI und noch besser auch CD, da dies schnelle Rückmeldungen und
automatisierte Tests für Komponenten bietet, die zusammen mit dem Quellcode in das
Code-Repository eingefügt werden.

• Abschluss der statischen Analyse des Quellcodes vor dem dynamischen Testen oder
als Teil eines automatisierten Prozesses.

• Durchführung von nicht-funktionalen Tests, wenn möglich, beginnend auf der Ebene
der Komponententests. Dies ist eine Form von Shift-Left, da die nicht-funktionalen
Testarten meist erst spät im SDLC durchgeführt werden, wenn ein vollständiges
System und eine repräsentative Testumgebung zur Verfügung stehen.

Shift-Left kann zu Beginn des Prozesses zu zusätzlichen Schulungen, Aufwand und/oder
Kosten führen. Jedoch gilt die Erwartung, später im Prozess Aufwand und/oder Kosten zu
sparen.

Für Shift-Left ist es wichtig, dass die Stakeholder von dem Konzept überzeugt sind und es
annehmen.

2.1.6 Retrospektiven und Prozessverbesserung

Retrospektiven werden häufig am Ende eines Projekts oder einer Iteration, bei einem
Releasemeilenstein oder bei Bedarf abgehalten. Zeitpunkt und Organisation der
Retrospektiven hängen von dem jeweiligen SDLC-Modell ab. In diesen Sitzungen diskutieren
die Teilnehmer (nicht nur Tester, sondern z. B. auch Entwickler, Architekten, Product Owner,
Businessanalysten):

• Was war erfolgreich und sollte beibehalten werden?

• Was war nicht erfolgreich und könnte verbessert werden?

• Wie können die Verbesserungen eingearbeitet und die Erfolge in Zukunft beibehalten
werden?

Certified Tester
Foundation Level

Version 4.0.2 Seite 32 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Die Ergebnisse sollten festgehalten werden und sind normalerweise Teil des
Testabschlussberichts (siehe Abschnitt 5.3.2). Retrospektiven sind entscheidend für die
erfolgreiche Umsetzung der kontinuierlichen Verbesserung, und es ist wichtig, dass die
empfohlenen Verbesserungen weiterverfolgt werden.

Typische Vorteile für das Testen sind:

• Erhöhte Effektivität/Effizienz des Testens, z. B. durch die Umsetzung von Vorschlägen
zur Prozessverbesserung

• Höhere Qualität der Testmittel, z. B. durch gemeinsames Review der Testprozesse

• Teamzusammenhalt und Lernen, z. B. durch die Möglichkeit, Probleme anzusprechen
und Verbesserungspunkte vorzuschlagen

• Verbesserte Qualität der Testbasis, z. B. weil Mängel im Umfang und in der Qualität
der Anforderungen angesprochen und behoben werden konnten

• Bessere Zusammenarbeit zwischen Entwicklung und Test, z. B. weil die
Zusammenarbeit regelmäßig überprüft und optimiert wird

2.2 Teststufen und Testarten

Teststufen sind Gruppen von Testaktivitäten, die gemeinsam organisiert und verwaltet werden.
Jede Teststufe ist eine Instanz des Testprozesses, die in Bezug auf Software in einer
bestimmten Entwicklungsphase durchgeführt wird, von einzelnen Komponenten bis hin zu
kompletten Systemen oder gegebenenfalls Systemen von Systemen.

Teststufen stehen in Beziehung zu anderen Aktivitäten innerhalb des SDLC. In sequenziellen
SDLC-Modellen sind die Teststufen oft so definiert, dass die Endekriterien einer Stufe Teil der
Eingangskriterien für die nächste Stufe sind. In einigen iterativen Modellen trifft dies nicht zu.
Entwicklungsaktivitäten können sich über mehrere Teststufen erstrecken. Teststufen können
sich zeitlich überschneiden.

Testarten sind Gruppen von Testaktivitäten, die sich auf bestimmte Qualitätsmerkmale
beziehen, und die meisten dieser Testaktivitäten können in jeder Teststufe durchgeführt
werden.

2.2.1 Teststufen

In diesem Lehrplan werden die folgenden fünf Teststufen beschrieben:

• Der Komponententest (auch Unittest genannt) konzentriert sich auf das Testen von
isolierten Komponenten. Dies erfordert oft spezifische Unterstützung, wie Testrahmen
oder Unittest-Frameworks. Komponententests werden normalerweise von Entwicklern
in ihrer Entwicklungsumgebung durchgeführt.

• Der Komponentenintegrationstest konzentriert sich auf das Testen der
Schnittstellen und Interaktionen zwischen Komponenten.

Certified Tester
Foundation Level

Version 4.0.2 Seite 33 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Komponentenintegrationstests sind stark abhängig von der Integrationsstrategie, wie
Bottom-up, Top-down oder Big Bang.

• Der Systemtest konzentriert sich auf das Gesamtverhalten und die
Leistungsfähigkeiten eines gesamten Systems oder Produkts und umfasst häufig
funktionale Tests von End-to-End-Aufgaben und nicht-funktionale Tests von
Qualitätsmerkmalen. Bei einigen nicht-funktionalen Qualitätsmerkmalen ist es besser,
sie an einem vollständigen System in einer repräsentativen Testumgebung zu testen
(z. B. Gebrauchstauglichkeit). Die Verwendung von Simulationen von Teilsystemen ist
ebenfalls möglich. Der Systemtest kann von einem unabhängigen Testteam
durchgeführt werden und bezieht sich auf Anforderungsspezifikationen für das System.

• Der Systemintegrationstest konzentriert sich auf das Testen der Schnittstellen
zwischen dem System unter Test und anderen Systemen und externen Diensten. Für
Systemintegrationstests sind geeignete Testumgebungen erforderlich, die
vorzugsweise der Betriebsumgebung entsprechen.

• Der Abnahmetest konzentriert sich auf die Validierung und den Nachweis der
Einsatzfähigkeit, d. h., dass das System die Geschäftsanforderungen des Benutzers
erfüllt. Idealerweise sollten Abnahmetests von den vorgesehenen Benutzern
durchgeführt werden. Die wichtigsten Formen des Abnahmetests sind: der
Benutzerabnahmetest (User Acceptance Testing, UAT), der betriebliche Abnahmetest,
der vertragliche Abnahmetest, der regulatorische Abnahmetest, der Alpha-Test und der
Beta-Test.

Die Teststufen werden in diesem Kapitel durch die folgende Liste von Attributen
unterschieden, um Überschneidungen von Testaktivitäten zu vermeiden:

• Testobjekt

• Testziele

• Testbasis

• Fehlerzustände und Fehlerwirkungen

• Vorgehensweise und Verantwortlichkeiten

2.2.2 Testarten

Es gibt eine Vielzahl von Testarten, die in Projekten eingesetzt werden können. In diesem
Lehrplan werden die folgenden vier Testarten behandelt:

Beim funktionalen Test werden die Funktionen bewertet, die eine Komponente oder ein
System erfüllen soll. Die Funktionen sind das, „was" das Testobjekt tun soll. Das Hauptziel der
funktionalen Tests ist die Überprüfung der funktionalen Vollständigkeit, der funktionalen
Korrektheit und der funktionalen Angemessenheit.

Beim nicht-funktionalen Test werden andere als die funktionalen Eigenschaften einer
Komponente oder eines Systems bewertet. Beim nicht-funktionalen Test wird geprüft, "wie gut
sich das System verhält". Das Hauptziel des nicht-funktionalen Tests ist die Überprüfung der

Certified Tester
Foundation Level

Version 4.0.2 Seite 34 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

nicht-funktionalen Qualitätsmerkmale. Die Norm ISO/IEC 25010 bietet die folgende
Klassifizierung der nicht-funktionalen Qualitätsmerkmale:

• Performanz

• Kompatibilität

• Gebrauchstauglichkeit (auch bekannt als Interaktionsfähigkeit)

• Zuverlässigkeit

• Sicherheit (Security)

• Wartbarkeit

• Übertragbarkeit (auch bekannt als Flexibilität)

• Sicherheit (Safety)
Manchmal ist es sinnvoll, dass nicht-funktionale Tests schon früh im SDLC beginnen (z. B. im
Rahmen von Reviews oder bereits in Komponententests). Viele nicht-funktionale Tests leiten
sich von funktionalen Tests ab, da sie dieselben funktionalen Tests verwenden, aber prüfen,
ob bei der Ausführung der Funktion eine nicht-funktionale Bedingung erfüllt ist
(z. B. die Prüfung, ob eine Funktion innerhalb einer bestimmten Zeit ausgeführt wird oder ob
eine Funktion auf eine neue Plattform portiert werden kann). Die späte Entdeckung von nicht-
funktionalen Fehlerzuständen kann den Erfolg eines Projekts ernsthaft gefährden. Nicht-
funktionale Tests erfordern manchmal eine sehr spezielle Testumgebung, wie z. B. ein
Gebrauchstauglichkeitslabor für Gebrauchstauglichkeitstests.

Der Black-Box-Test (siehe Abschnitt 4.2) basiert auf Spezifikationen und leitet die Tests aus
der Dokumentation ab, die sich nicht auf die interne Struktur des Testobjekts bezieht. Das
Hauptziel des Black-Box-Tests besteht darin, das Verhalten des Systems gegen seine
Spezifikationen zu überprüfen.

Der White-Box-Test (siehe Abschnitt 4.3) ist strukturbasiert und leitet Tests aus der
Implementierung oder der internen Struktur des Systems ab (z. B. Code, Architektur,
Arbeitsabläufe und Datenflüsse). Das Hauptziel des White-Box-Tests besteht darin, die
zugrunde liegende Struktur durch die Tests bis zu einer akzeptablen Stufe zu überdecken.

Alle vier oben genannten Testarten können auf allen Teststufen angewandt werden, auch
wenn der Schwerpunkt auf jeder Stufe anders ist. Für alle genannten Testarten können
unterschiedliche Testverfahren zur Ableitung von Testbedingungen und Testfällen verwendet
werden.

2.2.3 Fehlernachtest und Regressionstest

Änderungen werden in der Regel an einer Komponente oder einem System vorgenommen,
um entweder durch Hinzufügen eines neuen Features eine Verbesserung oder durch
Beseitigung eines Fehlerzustands eine Korrektur zu erreichen. Das Testen sollte dann auch
Fehlernachtests und Regressionstests beinhalten.
Der Fehlernachtest bestätigt, dass ein ursprünglicher Fehlerzustand erfolgreich behoben
wurde. Je nach Risiko kann man die behobene Version der Software auf verschiedene Arten
testen, z. B.:

Certified Tester
Foundation Level

Version 4.0.2 Seite 35 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Ausführen aller Tests, die zuvor aufgrund des Fehlerzustands fehlgeschlagen sind,
oder auch durch

• Hinzufügen neuer Tests, um alle Änderungen zu überdecken, die zur Behebung des
Fehlerzustands erforderlich waren.

Wenn jedoch die Zeit oder das Geld für die Behebung von Fehlern knapp ist, können sich
Fehlernachtests darauf beschränken, lediglich die Testschritte auszuführen, die die durch den
Fehlerzustand verursachte Fehlerwirkung produziert haben, und zu prüfen, ob die
Fehlerwirkung nicht mehr auftritt.

Der Regressionstest bestätigt, dass eine Änderung, einschließlich einer bereits getesteten
Fehlerbehebung, keine nachteiligen Folgen hat. Die nachteiligen Folgen könnten die
Komponente betreffen, an der die Änderung vorgenommen wurde, andere Komponenten
desselben Systems oder sogar andere verbundene Systeme. Der Regressionstest muss sich
nicht auf das Testobjekt selbst beschränken, sondern kann sich auch auf die Umgebung
beziehen. Es ist ratsam, zunächst eine Auswirkungsanalyse durchzuführen, um den Umfang
der Regressionstests zu erkennen. Die Auswirkungsanalyse zeigt, welche Teile der Software
betroffen sein könnten.

Regressionstestsuiten werden viele Male durchlaufen, und im Allgemeinen nimmt die Anzahl
der Testfälle mit jeder Iteration oder jedem Release zu, so dass sich Regressionstests sehr
gut für eine Automatisierung eignen. Die Testautomatisierung sollte bereits in einem frühen
Stadium des Projekts beginnen. Wenn CI eingesetzt wird, wie z. B. bei DevOps (siehe
Abschnitt 2.1.4), ist es gute Praxis, auch automatisierte Regressionstests einzubeziehen. Je
nach Situation kann dies Regressionstests auf verschiedenen Teststufen umfassen.

Fehlernachtests und/oder Regressionstests für das Testobjekt sind auf allen Teststufen
erforderlich, wenn Fehlerzustände behoben und/oder Änderungen für diese Teststufen
vorgenommen wurden.

2.3 Wartungstest

Es gibt verschiedene Kategorien von Wartung, sie kann korrigierend sein, sich an Änderungen
in der Umgebung anpassen oder die Leistung oder Wartbarkeit verbessern (Einzelheiten siehe
ISO/IEC 14764), so dass die Wartung geplante Releases/Bereitstellungen und ungeplante
Releases/Bereitstellungen (Hotfixes) umfassen kann. Vor einer Änderung kann eine
Auswirkungsanalyse durchgeführt werden, um auf der Grundlage der potenziellen
Auswirkungen auf andere Bereiche des Systems zu entscheiden, ob die Änderung
durchgeführt werden sollte. Das Testen der Änderungen im operativen System umfasst sowohl
die Bewertung des Erfolgs der Implementierung der Änderung als auch die Überprüfung auf
mögliche nachteilige Folgen (Regressionstest) in Teilen des Systems, die unverändert bleiben
(was in der Regel der größte Teil des Systems ist).

Der Umfang des Wartungstests hängt in der Regel ab von:

• dem Grad des Risikos der Änderung,

• der Größe des bestehenden Systems,

Certified Tester
Foundation Level

Version 4.0.2 Seite 36 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• dem Umfang der Änderung.
Die Auslöser für Wartung und Wartungstest können wie folgt klassifiziert werden:

• Änderungen, wie z. B. geplante Erweiterungen (d. h. releasebasiert), korrigierende
Änderungen oder Hotfixes

• Upgrades oder Migrationen der Betriebsumgebung, z. B. von einer Plattform auf eine
andere, was Tests der neuen Umgebung sowie der geänderten Software erfordern
kann, oder Tests der Datenkonvertierung, wenn Daten aus einer anderen Anwendung
in das zu wartende System migriert werden.

• Außerbetriebnahme, z. B. wenn eine Anwendung das Ende ihres Lebens erreicht.
Wenn ein System außer Betrieb genommen wird, kann dies Tests der
Datenarchivierung erfordern, falls lange Datenaufbewahrungsfristen erforderlich sind.
Das Testen von Wiederherstellungsverfahren nach der Archivierung kann ebenfalls
erforderlich sein, wenn bestimmte Daten während der Archivierungszeit benötigt
werden.

Certified Tester
Foundation Level

Version 4.0.2 Seite 37 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

3. Statischer Test – 80 Minuten
Schlüsselbegriffe

Anomalie, dynamischer Test, formales Review, informelles Review, Inspektion, Review,
statische Analyse, statischer Test, Technisches Review, Walkthrough

Lernziele für Kapitel 3: Der Lernende kann ...

3.1 Grundlagen des statischen Tests

FL-3.1.1 (K1) ... Arten von Arbeitsergebnissen, die durch statischen Test geprüft werden
können, erkennen

FL-3.1.2 (K2) ... den Wert statischer Tests erklären
FL-3.1.3 (K2) ... statischen Test und dynamischen Test vergleichen und gegenüberstellen

3.2 Feedback- und Reviewprozess

FL-3.2.1 (K1) ... Vorteile eines frühzeitigen und häufigen Stakeholder-Feedbacks erkennen
FL-3.2.2 (K2) ... die Aktivitäten des Reviewprozesses zusammenfassen
FL-3.2.3 (K1) ... die bei der Durchführung von Reviews den Hauptrollen zugewiesenen

Verantwortlichkeiten wiedergeben
FL-3.2.4 (K2) ... verschiedene Arten von Reviews vergleichen und gegenüberstellen
FL-3.2.5 (K1) ... die Faktoren, die zu einem erfolgreichen Review beitragen, wiedergeben

Certified Tester
Foundation Level

Version 4.0.2 Seite 38 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

3.1 Grundlagen des statischen Tests

Im Gegensatz zum dynamischen Test muss beim statischen Test die zu testende Software
nicht ausgeführt werden. Code, Prozessspezifikation, Systemarchitekturspezifikation oder
andere Arbeitsergebnisse werden durch manuelle Prüfung (z. B. Review) oder mit Hilfe eines
Werkzeugs (z. B. statische Analyse) bewertet. Zu den Testzielen gehören die Verbesserung
der Qualität, die Aufdeckung von Fehlerzuständen und die Bewertung von Merkmalen wie
Lesbarkeit, Vollständigkeit, Korrektheit, Testbarkeit und Konsistenz. Statische Tests können
sowohl zur Verifizierung als auch zur Validierung eingesetzt werden.

Tester, Fachbereichsvertreter (Product Owner, Businessanalysten etc.) und Entwickler
arbeiten beim Example-Mapping, beim gemeinsamen Schreiben von User-Storys und bei der
Verfeinerung (Refinement) des Backlogs zusammen, um sicherzustellen, dass die User-Storys
und die zugehörigen Arbeitsergebnisse definierten Kriterien entsprechen, z. B. der Definition-
of-Ready (siehe Abschnitt 5.1.3). Reviewverfahren können angewendet werden, um
sicherzustellen, dass die User-Storys vollständig und verständlich sind und testbare
Akzeptanzkriterien enthalten. Indem sie die richtigen Fragen stellen, können Tester die
vorgeschlagenen User-Storys analysieren, hinterfragen und verbessern.

Die statische Analyse kann Probleme vor dem dynamischen Testen aufdecken und ist oft mit
weniger Aufwand verbunden, da keine Testfälle erforderlich sind und in der Regel Werkzeuge
(siehe Kapitel 6) verwendet werden. Die statische Analyse wird häufig in CI-Frameworks
integriert (siehe Abschnitt 2.1.4). Die statische Analyse wird zwar hauptsächlich zur Erkennung
spezifischer Fehlerzustände im Code eingesetzt, dient aber auch zur Bewertung der
Wartbarkeit und Sicherheit. Rechtschreibprüfung und Werkzeuge zur Prüfung der Lesbarkeit
sind weitere Beispiele für statische Analysewerkzeuge.

3.1.1 Arbeitsergebnisse, die durch statische Tests untersucht werden können

Fast jedes Arbeitsergebnis kann mit statischen Tests untersucht werden. Beispiele hierfür sind
Spezifikation der Anforderungen, Quellcode, Testkonzepte, Testfälle, Produkt-Backlog-
Einträge, Test-Chartas, Projektdokumentation, Verträge oder Modelle.

Jedes Arbeitsergebnis, das gelesen und verstanden werden kann, kann Gegenstand eines
Reviews sein. Für die statische Analyse benötigen Arbeitsergebnisse jedoch eine Struktur,
anhand derer sie überprüft werden können, z. B. Modelle, Code oder Text mit einer formalen
Syntax.

Zu den Arbeitsergebnissen, die sich nicht für statische Tests eignen, gehören solche, die für
den Menschen schwer zu interpretieren sind und die nicht mit Hilfe von Werkzeugen analysiert
werden sollten, z. B. ausführbarer Code von Drittanbietern, der aus rechtlichen Gründen nicht
untersucht werden darf.

3.1.2 Wert des statischen Tests

Der statische Test kann Fehlerzustände in den frühesten Phasen des SDLC aufdecken und
erfüllt damit den Grundsatz des frühen Testens (siehe Abschnitt 1.3). Es können auch
Fehlerzustände aufgedeckt werden, die durch dynamische Tests nicht erkannt werden

Certified Tester
Foundation Level

Version 4.0.2 Seite 39 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

können, z. B. nicht erreichbarer Code, nicht wie gewünscht implementierte Entwurfsmuster,
Fehlerzustände in nicht ausführbaren Arbeitsergebnissen.

Der statische Test bietet die Möglichkeit, die Qualität von Arbeitsergebnissen zu bewerten und
Vertrauen in sie aufzubauen. Durch die Überprüfung der dokumentierten Anforderungen
können die Stakeholder auch sicherstellen, dass diese Anforderungen ihre tatsächlichen
Bedürfnisse beschreiben. Da der statische Test bereits in einer frühen Phase des SDLC
durchgeführt werden kann, kann ein gemeinsames Verständnis zwischen den beteiligten
Stakeholdern geschaffen werden. Auch die Kommunikation zwischen den beteiligten
Stakeholdern wird verbessert. Aus diesem Grund ist es empfehlenswert, eine Vielzahl von
Stakeholdern in statische Tests einzubeziehen.

Auch wenn die Durchführung von Reviews Kosten verursacht, sind die Gesamtkosten des
Projekts in der Regel wesentlich geringer, als wenn keine Reviews durchgeführt werden. Das
liegt daran, dass weniger Zeit und Aufwand für die Behebung von Fehlerzuständen im
späteren Verlauf des Projekts aufgewendet werden müssen.

Bestimmte Fehlerzustände im Code können durch statische Analyse effizienter aufgedeckt
werden als durch dynamische Tests, was in der Regel sowohl zu weniger Fehler im Code als
auch zu einem geringeren Gesamtentwicklungsaufwand führt.

3.1.3 Unterschiede zwischen statischem Test und dynamischem Test

Statischer Test und dynamischer Test ergänzen sich gegenseitig. Sie haben ähnliche Ziele,
wie z. B. die Unterstützung bei der Erkennung von Fehlerzuständen in Arbeitsergebnissen
(siehe Abschnitt 1.1.1), aber es gibt auch einige Unterschiede, wie z. B.:

• Sowohl statischer Test als auch dynamischer Test (mit Analyse der Fehlerwirkungen)
können zur Entdeckung von Fehlerzuständen führen, allerdings gibt es einige
Fehlerzustände, die nur durch statischen oder dynamischen Test gefunden werden
können.

• Beim statischen Test werden Fehlerzustände direkt gefunden, während beim
dynamischen Test Fehlerwirkungen auftreten, aus denen durch eine anschließende
Analyse die zugehörigen Fehlerzustände ermittelt werden.

• Statischer Test kann leichter Fehlerzustände aufdecken, die auf Pfaden durch den
Code liegen, die selten ausgeführt werden oder die schwer durch dynamische Tests
zu erreichen sind.

• Statischer Test kann auf nicht ausführbare Arbeitsergebnisse angewandt werden,
während dynamischer Test nur auf ausführbare Arbeitsergebnisse angewandt werden
kann.

• Statischer Test kann zur Messung von Qualitätsmerkmalen verwendet werden, die
nicht von der Ausführung des Codes abhängen (z. B. Wartbarkeit), während
dynamischer Test zur Messung von Qualitätsmerkmalen verwendet werden kann, die
von der Ausführung des Codes abhängen (z. B. Performanz).

Certified Tester
Foundation Level

Version 4.0.2 Seite 40 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Typische Fehlerzustände, die durch statische Tests leichter und/oder kostengünstiger zu
finden sind, sind:

• Fehlerzustände in Anforderungen, z. B. Inkonsistenzen, Mehrdeutigkeiten,
Widersprüche, Auslassungen, Ungenauigkeiten, Duplikationen

• Fehlerzustände im Entwurf, z. B. ineffiziente Datenbankstrukturen, schlechte
Modularität

• Bestimmte Arten von Fehlerzuständen im Code, z. B. Variablen mit undefinierten
Werten, nicht deklarierte Variablen, unerreichbarer oder duplizierter Code, übermäßige
Komplexität des Codes

• Abweichungen von Standards, z. B. mangelnde Einhaltung von Namenskonventionen
in Programmierstandards

• Falsche Spezifikation von Schnittstellen, z. B. nicht übereinstimmende Anzahl, Art oder
Reihenfolge von Parametern

• Spezifische Arten von Schwachstellen in der Sicherheit, z. B. Pufferüberläufe

• Lücken oder Ungenauigkeiten in der Überdeckung der Testbasis, z. B. fehlende Tests
für ein Akzeptanzkriterium

3.2 Feedback- und Reviewprozess

3.2.1 Vorteile eines frühzeitigen und häufigen Stakeholder-Feedbacks

Ein frühzeitiges und häufiges Feedback ermöglicht die frühzeitige Kommunikation von
potenziellen Qualitätsproblemen. Wenn die Stakeholder während des SDLC nur wenig
einbezogen werden, entspricht das zu entwickelnde Produkt möglicherweise nicht den
ursprünglichen oder aktuellen Vorstellungen der Stakeholder. Wenn die Wünsche der
Stakeholder nicht erfüllt werden, kann dies zu kostspieligen Nacharbeiten, verpassten
Terminen, Schuldzuweisungen und sogar zu einem kompletten Scheitern des Projekts führen.

Häufiges Feedback der Stakeholder während des SDLC kann Missverständnisse über
Anforderungen vorbeugen und sicherstellen, dass Änderungen an den Anforderungen
verstanden und früher umgesetzt werden. Dies hilft dem Entwicklungsteam dabei, besser zu
verstehen, was es entwickelt. Es ermöglicht ihm, sich auf die Features zu konzentrieren, die
für die Stakeholder den größten Nutzen bringen und die sich am positivsten auf die
identifizierten Risiken auswirken.

3.2.2 Aktivitäten des Reviewprozesses

Die Norm ISO/IEC 20246 definiert einen generischen Reviewprozess, der einen strukturierten,
aber flexiblen Rahmen bietet, auf dessen Grundlage ein spezifischer Reviewprozess auf eine
bestimmte Situation zugeschnitten werden kann. Wenn das geforderte Review eher formal ist,
werden mehr der beschriebenen Aufgaben für die verschiedenen Aktivitäten benötigt.

Certified Tester
Foundation Level

Version 4.0.2 Seite 41 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Viele Arbeitsergebnisse sind zu umfangreich, als dass sie in einem einzigen Review behandelt
werden könnten. Der Reviewprozess kann daher mehrfach durchgeführt werden, um das
Review für das gesamte Arbeitsergebnis zu vervollständigen.

Die Aktivitäten des Reviewprozesses sind:

• Planung: In der Planungsphase wird der Umfang des Reviews festgelegt, der den
Zweck, das zu überprüfende Arbeitsergebnis, die zu bewertenden Qualitätsmerkmale,
die zu berücksichtigenden Bereiche, die Endekriterien, unterstützende Informationen
wie Normen, den Aufwand und den Zeitrahmen für das Review umfasst.

• Reviewbeginn: Während des Reviewbeginns geht es darum, sicherzustellen, dass
jeder Beteiligte und alles, was benötigt wird, vorbereitet ist, um mit dem Review zu
starten. Dazu gehört auch, dass jeder Teilnehmer Zugang zu dem zu prüfenden
Arbeitsergebnis hat, seine Rolle und Verantwortlichkeiten versteht und alles erhält, was
er für die Durchführung des Reviews benötigt.

• Individuelles Review: Jeder Gutachter führt ein individuelles Review durch, um die
Qualität des zu prüfenden Arbeitsergebnisses zu bewerten und Anomalien,
Empfehlungen und Fragen zu identifizieren, indem er ein oder mehrere
Reviewverfahren anwendet (z. B. checklistenbasiertes Review, szenariobasiertes
Review). Die Norm ISO/IEC 20246 geht näher auf die verschiedenen Reviewverfahren
ein. Die Gutachter protokollieren alle von ihnen identifizierten Anomalien,
Empfehlungen und Fragen.

• Kommunikation und Analyse: Da es sich bei den während eines Reviews
festgestellten Anomalien nicht unbedingt um Fehlerzustände handelt, müssen alle
Anomalien analysiert und diskutiert werden. Für jede Anomalie sollte eine Entschei-
dung über ihren Status, ihre Verantwortlichkeit und die erforderlichen Maßnahmen
getroffen werden. Dies geschieht in der Regel in einer Reviewsitzung, in der die Teil-
nehmer auch über die Qualität des geprüften Arbeitsergebnisses und über die erfor-
derlichen Folgemaßnahmen entscheiden. Nach Abschluss der Maßnahmen kann ein
Folgereview erforderlich sein.

• Behebung und Berichterstattung: Für jeden Fehlerzustand sollte ein Fehlerbericht
erstellt werden, damit die Korrekturmaßnahmen nachverfolgt werden können. Wenn
die Endekriterien erreicht sind, kann das Arbeitsergebnis abgenommen werden. Über
die Ergebnisse des Reviews wird berichtet.

3.2.3 Rollen und Verantwortlichkeiten bei Reviews

An Reviews sind verschiedene Stakeholder beteiligt, die mehrere Rollen einnehmen können.
Die wichtigsten Rollen und ihre Verantwortlichkeiten sind:

• Manager – entscheidet, was geprüft werden soll, und stellt Ressourcen wie Personal
und Zeit für das Review zur Verfügung.

• Autor – erstellt und korrigiert das zu prüfende Arbeitsergebnis.

Certified Tester
Foundation Level

Version 4.0.2 Seite 42 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Moderator (auch Facilitator genannt) – sorgt für einen effektiven Ablauf der Reviewsit-
zungen, einschließlich Mediation, Zeitmanagement und einer geschützten
Reviewumgebung, in der jeder frei sprechen kann.

• Protokollant – sammelt Anomalien von Gutachtern und zeichnet Reviewinformationen
auf, z. B. Entscheidungen und neue Anomalien, die während der Reviewsitzung
gefunden werden.

• Gutachter – führt Reviews durch. Ein Gutachter (auch Reviewer genannt) kann ein
Projektmitarbeiter, ein Fachexperte oder ein anderer Stakeholder sein.

• Reviewleiter – übernimmt die Gesamtverantwortung für das Review, z. B. die
Entscheidung, wer daran teilnimmt, und die Organisation, wann und wo das Review
stattfindet.

Andere, detailliertere Rollen sind möglich, wie in der Norm ISO/IEC 20246 beschrieben.

3.2.4 Arten von Reviews

Es gibt viele Arten von Reviews, die von informellen Reviews bis zu formalen Reviews reichen.
Der erforderliche Grad an Formalität hängt von Faktoren wie dem angewandten SDLC, der
Reife des Entwicklungsprozesses, der Kritikalität und Komplexität des zu prüfenden
Arbeitsergebnisses, gesetzlichen oder regulatorischen Anforderungen und dem Bedarf an
einem Prüfnachweis ab. Ein und dasselbe Arbeitsergebnis kann mit verschiedenen
Reviewarten geprüft werden, z. B. zunächst mit einem informellen und später mit einem
formaleren Review.

Die Auswahl der richtigen Reviewart ist der Schlüssel zum Erreichen der geforderten
Reviewziele (siehe Abschnitt 3.2.5). Die Auswahl richtet sich nicht nur nach den Zielen,
sondern auch nach Faktoren wie dem Projektbedarf, den verfügbaren Ressourcen, der Art des
Arbeitsergebnisses und seinen Risiken, dem Unternehmensbereich und der
Unternehmenskultur.

Einige häufig verwendete Arten von Reviews sind:

• Informelles Review: Ein informelles Review folgt keinem definierten Prozess und
erfordert keine formalen, dokumentierten Ergebnisse. Das Hauptziel ist die Aufdeckung
von Anomalien.

• Walkthrough: Ein Walkthrough, das vom Autor geleitet wird, kann vielen Zielen
dienen, z. B. der Bewertung der Qualität und dem Aufbau von Vertrauen in das
Arbeitsergebnis, der Schulung von Gutachtern, der Erzielung eines Konsenses, der
Generierung neuer Ideen, der Motivation und Befähigung von Autoren zur
Verbesserung und der Aufdeckung von Anomalien. Gutachter können vor dem
Walkthrough ein individuelles Review durchführen, dies ist jedoch nicht verpflichtend.

• Technisches Review: Ein Technisches Review wird von technisch qualifizierten
Gutachtern durchgeführt und von einem Moderator geleitet. Die Ziele eines
Technischen Reviews sind das Erreichen eines Konsenses und die
Entscheidungsfindung in Bezug auf ein technisches Problem, aber auch die
Aufdeckung von Anomalien, die Bewertung der Qualität und der Aufbau von Vertrauen

Certified Tester
Foundation Level

Version 4.0.2 Seite 43 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

in das Arbeitsergebnis, die Entwicklung neuer Ideen sowie die Motivation und
Befähigung der Autoren zur Verbesserung.

• Inspektion: Da die Inspektion die formalste Art der Reviews ist, folgt sie dem
vollständigen allgemeinen Prozess (siehe Abschnitt 3.2.2). Das Hauptziel besteht
darin, die maximale Anzahl von Anomalien zu finden. Weitere Ziele sind die Bewertung
der Qualität, der Aufbau von Vertrauen in das Arbeitsergebnis und die Motivation und
Befähigung der Autoren zur Verbesserung. Es werden Metriken gesammelt und zur
Verbesserung des SDLC, einschließlich des Inspektionsprozesses, verwendet. Bei
Inspektionen kann der Autor nicht als Reviewleiter oder Protokollant agieren.

3.2.5 Erfolgsfaktoren für Reviews

Es gibt mehrere Faktoren, die den Erfolg von Reviews bestimmen, dazu gehören unter
anderem:

• Die Festlegung klarer Ziele und messbarer Endekriterien. Die Bewertung der
Teilnehmer sollte niemals ein Ziel sein

• Auswahl der geeigneten Reviewart, um die vorgegebenen Ziele zu erreichen und um
der Art des Arbeitsergebnisses, den Reviewteilnehmern, den Projektanforderungen
und dem Kontext gerecht zu werden

• Durchführung von Reviews in kleinen Einheiten, damit die Gutachter während eines
individuellen Reviews und/oder der Reviewsitzung (sofern diese stattfindet) nicht die
Konzentration verlieren

• Lieferung von Feedback aus Reviews an die Stakeholder und Autoren, damit diese das
Produkt und ihre Aktivitäten verbessern können (siehe Abschnitt 3.2.1)

• Bereitstellung von ausreichend Zeit für die Teilnehmer zur Vorbereitung auf das
Review

• Unterstützung des Reviewprozesses durch das Management

• Einbeziehung der Reviews in die Unternehmenskultur, um Lernen und
Prozessverbesserung zu fördern

• Angebot geeigneter Schulungen für alle Teilnehmer, damit sie wissen, wie sie ihre
Rolle erfüllen können

• Moderation der Sitzungen

Certified Tester
Foundation Level

Version 4.0.2 Seite 44 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

4. Testanalyse und -entwurf – 390 Minuten
Schlüsselbegriffe

Abnahmetestgetriebene Entwicklung, Akzeptanzkriterien, Anweisungsüberdeckung,
Äquivalenzklassenbildung, auf Zusammenarbeit basierender Testansatz, Black-Box-
Testverfahren, checklistenbasierter Test, Entscheidungstabellentest, erfahrungsbasiertes
Testverfahren, explorativer Test, Grenzwertanalyse, intuitive Testfallermittlung, Testverfahren,
Überdeckung, Überdeckungselement, White-Box-Testverfahren, Zustandsübergangstest,
Zweigüberdeckung

Lernziele für Kapitel 4: Der Lernende kann ...

4.1 Testverfahren im Überblick

FL-4.1.1 (K2) ... Black-Box-Testverfahren, White-Box-Testverfahren und erfahrungsbasierte
Testverfahren unterscheiden

4.2 Black-Box-Testverfahren

FL-4.2.1 (K3) ... die Äquivalenzklassenbildung zur Ableitung von Testfällen anwenden
FL-4.2.2 (K3) ... die Grenzwertanalyse zur Ableitung von Testfällen anwenden
FL-4.2.3 (K3) ... den Entscheidungstabellentest zur Ableitung von Testfällen anwenden
FL-4.2.4 (K3) ... den Zustandsübergangstest zur Ableitung von Testfällen anwenden

4.3 White-Box-Testverfahren

FL-4.3.1 (K2) ... den Anweisungstest erklären
FL-4.3.2 (K2) ... den Zweigtest erklären
FL-4.3.3 (K2) ... den Wert des White-Box-Tests erklären

4.4 Erfahrungsbasierte Testverfahren

FL-4.4.1 (K2) ... die intuitive Testfallermittlung erklären
FL-4.4.2 (K2) ... den explorativen Test erklären
FL-4.4.3 (K2) ... den checklistenbasierten Test erklären

4.5 Auf Zusammenarbeit basierende Testansätze

FL-4.5.1 (K2) ... das Schreiben von User-Storys in Zusammenarbeit mit Entwicklern und
Fachvertretern erklären

FL-4.5.2 (K2) ... die verschiedenen Möglichkeiten zum Schreiben von Akzeptanzkriterien
einordnen

FL-4.5.3 (K3) ... die abnahmetestgetriebene Entwicklung (ATDD) zur Ableitung von
Testfällen anwenden

Certified Tester
Foundation Level

Version 4.0.2 Seite 45 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

4.1 Testverfahren im Überblick

Testverfahren unterstützen den Tester bei der Testanalyse (was soll getestet werden) und
beim Testentwurf (wie soll getestet werden). Testverfahren helfen dabei, eine relativ kleine,
aber ausreichende Menge von Testfällen systematisch zu entwickeln. Testverfahren helfen
dem Tester auch bei der Definition von Testbedingungen, der Identifizierung von
Überdeckungselementen und der Identifizierung von Testdaten während der Testanalyse und
des Testentwurfs. Weitere Informationen zu Testverfahren finden sich in der Norm
ISO/IEC/IEEE 29119-4 sowie in (Beizer 1990, Craig 2002, Copeland 2004, Koomen 2006,
Jorgensen 2014, Ammann 2016, Forgács 2019).

In diesem Lehrplan werden Testverfahren als Black-Box-, White-Box- und erfahrungsbasiert
klassifiziert.

Black-Box-Testverfahren (auch spezifikationsbasierte Verfahren genannt) basieren auf einer
Analyse des spezifizierten Verhaltens des Testobjekts ohne Kenntnis der internen Struktur.
Daher werden die Testfälle unabhängig von der Implementierung der Software erstellt. Folglich
sind die Testfälle auch dann noch nützlich, wenn sich die Implementierung ändert, das
geforderte Verhalten aber gleich bleibt.

White-Box-Testverfahren (auch als strukturbasierte Verfahren bekannt) basieren auf einer
Analyse der internen Struktur und Verarbeitung des Testobjekts. Da die Testfälle vom Entwurf
der Software abhängig sind, können sie erst nach dem Entwurf oder der Implementierung des
Testobjekts erstellt werden.

Erfahrungsbasierte Testverfahren nutzen das Wissen und die Erfahrung von Testern
effektiv für den Entwurf und die Implementierung von Testfällen. Die Effektivität dieser
Testverfahren hängt stark von den Kenntnissen des Testers ab. Mit erfahrungsbasierten
Testverfahren können Fehlerzustände aufgedeckt werden, die bei Black-Box-Testverfahren
und White-Box-Testverfahren möglicherweise übersehen werden. Daher ergänzen
erfahrungsbasierte Testverfahren Black-Box-Testverfahren und White-Box-Testverfahren.

4.2 Black-Box-Testverfahren

Die folgenden Abschnitte behandeln die üblichen Black-Box-Testverfahren:

• Äquivalenzklassenbildung

• Grenzwertanalyse

• Entscheidungstabellentest

• Zustandsübergangstest

4.2.1 Äquivalenzklassenbildung

Bei der Äquivalenzklassenbildung werden Daten in Klassen (so genannte Äquivalenzklassen)
unterteilt, wobei davon ausgegangen wird, dass alle Elemente einer bestimmten Klasse vom
Testobjekt auf die gleiche Weise verarbeitet werden. Die Theorie hinter diesem Verfahren ist,

Certified Tester
Foundation Level

Version 4.0.2 Seite 46 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

dass, wenn ein Testfall, der einen Wert aus einer Äquivalenzklasse testet, einen Fehlerzustand
entdeckt, dieser Fehlerzustand auch von Testfällen entdeckt worden wäre, die einen
beliebigen anderen Wert aus derselben Klasse testen. Daher reicht ein Test je Klasse aus.

Äquivalenzklassen können für jedes dem Testobjekt zugehörige Datenelement ermittelt
werden, einschließlich Eingaben, Ausgaben, Konfigurationselementen, internen Werten,
zeitbezogenen Werten und Schnittstellenparametern. Die Klassen können
zusammenhängend oder einzeln, geordnet oder ungeordnet, endlich oder unendlich sein. Die
Klassen dürfen sich nicht überschneiden und müssen nicht-leere Mengen sein.

Bei einfachen Testelementen kann die Äquivalenzklassenbildung leicht sein, aber in der Praxis
ist es oft kompliziert zu verstehen, wie das Testobjekt verschiedene Werte verarbeitet. Daher
sollte die Klassenbildung mit Sorgfalt vorgenommen werden.

Eine Klasse, die gültige Werte enthält, wird als gültige Klasse bezeichnet. Eine Klasse, die
ungültige Werte enthält, wird als ungültige Klasse bezeichnet. Die Definitionen von gültigen
und ungültigen Werten können je nach Team und Unternehmen variieren. So können
beispielsweise gültige Werte als solche interpretiert werden, die vom Testobjekt verarbeitet
werden sollten, oder als solche, für die die Spezifikation ihre Verarbeitung definiert. Ungültige
Werte können als solche interpretiert werden, die vom Testobjekt ignoriert oder
zurückgewiesen werden sollen, oder als solche, für die in der Spezifikation des Testobjekts
keine Verarbeitung festgelegt ist.

In der Äquivalenzklassenbildung sind die Äquivalenzklassen die Überdeckungselemente. Um
mit diesem Testverfahren eine 100%ige Überdeckung zu erreichen, müssen die Testfälle alle
identifizierten Klassen (einschließlich ungültiger Klassen) mindestens einmal ausführen. Die
Überdeckung wird gemessen als die Anzahl der Klassen, die von mindestens einem Testfall
ausgeführt wurden, geteilt durch die Gesamtzahl der identifizierten Klassen, und wird in
Prozent ausgedrückt.

Viele Testelemente umfassen mehrere Gruppen von Klassen (z. B. Testelemente mit mehr als
einem Eingabeparameter), was bedeutet, dass ein Testfall Klassen aus verschiedenen
Gruppen von Klassen abdeckt. Das einfachste Überdeckungskriterium für den Fall mehrerer
Klassensätze ist die Each-Choice-Überdeckung (Ammann 2016). Diese verlangt, dass jede
Klasse aus jeder Gruppe von Klassen durch Testfälle mindestens einmal ausgeführt wird. Die
Each-Choice-Überdeckung berücksichtigt keine gezielten Kombinationen von Klassen.
Ungültige Äquivalenzklassen sollten nicht gemeinsam in einem Testfall getestet werden, um
Fehlermaskierung zu vermeiden, d. h. eine Situation, in der ein Fehlerzustand die Entdeckung
eines anderen verhindert.

4.2.2 Grenzwertanalyse

Die Grenzwertanalyse ist ein Testverfahren, das auf der Überprüfung der Grenzen von
Äquivalenzklassen basiert. Daher kann die Grenzwertanalyse nur für geordnete Klassen
verwendet werden. Die Minimum- und Maximumwerte einer Klasse sind ihre Grenzwerte.
Wenn zwei Elemente zur gleichen Klasse gehören, müssen bei der Grenzwertanalyse alle
Elemente zwischen ihnen ebenfalls zu dieser Klasse gehören.

Certified Tester
Foundation Level

Version 4.0.2 Seite 47 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Die Grenzwertanalyse konzentriert sich auf die Grenzwerte der Klassen, weil Entwicklern bei
diesen Grenzwerten eher Fehlhandlungen unterlaufen. Typische Fehlerzustände, die durch
die Grenzwertanalyse gefunden werden, liegen dort, wo implementierte Grenzen an
Positionen oberhalb oder unterhalb ihrer beabsichtigten Positionen verschoben oder ganz
ausgelassen werden.

In diesem Lehrplan werden zwei Versionen der Grenzwertanalyse behandelt: 2-Wert-
Grenzwertanalyse und 3-Wert-Grenzwertanalyse. Sie unterscheiden sich in der Anzahl der
Überdeckungselemente pro Grenzwert, die ausgeführt werden müssen, um eine 100%ige
Überdeckung zu erreichen.

Bei der 2-Wert-Grenzwertanalyse (Craig 2002, Myers 2011) gibt es für jeden Grenzwert zwei
Überdeckungselemente: den Grenzwert und seinen engsten Nachbarn, der zur angrenzenden
Klasse gehört. Um bei der 2-Wert-Grenzwertanalyse eine 100%ige Überdeckung zu erreichen,
müssen die Testfälle alle Überdeckungselemente, d. h. alle identifizierten Grenzwerte,
ausführen. Die Überdeckung wird gemessen als die Anzahl der ausgeführten Grenzwerte,
geteilt durch die Gesamtzahl der identifizierten Grenzwerte, und wird in Prozent ausgedrückt.

In der 3-Wert-Grenzwertanalyse (Koomen 2006, O'Regan 2019) gibt es für jeden Grenzwert
drei Überdeckungselemente: den Grenzwert und seine beiden Nachbarn. Daher können bei
der 3-Wert-Grenzwertanalyse einige der Überdeckungselemente keine Grenzwerte sein. Um
bei der 3-Wert-Grenzwertanalyse eine 100%ige Überdeckung zu erreichen, müssen die
Testfälle alle Überdeckungselemente, d. h. die identifizierten Grenzwerte und deren Nachbarn,
ausführen. Die Überdeckung wird gemessen als die Anzahl der ausgeführten Grenzwerte und
ihrer Nachbarn, geteilt durch die Gesamtzahl der identifizierten Grenzwerte und ihrer
Nachbarn, und wird in Prozent ausgedrückt.

Die 3-Wert-Grenzwertanalyse ist strenger als die 2-Wert-Grenzwertanalyse, da sie
Fehlerzustände aufdecken kann, die bei der 2-Wert-Grenzwertanalyse übersehen wurden.
Wenn beispielsweise die Entscheidung "wenn (x ≤ 10) ..." fälschlicherweise als "wenn (x = 10)
..." implementiert wird, kann keiner der aus der 2-Wert-Grenzwertanalyse abgeleiteten
Testdaten (x = 10, x = 11) den Fehlerzustand aufdecken. Mit x = 9, abgeleitet aus der 3-Wert-
Grenzwertanalyse, wird der Fehlerzustand jedoch mit hoher Wahrscheinlichkeit entdeckt.

4.2.3 Entscheidungstabellentest

Entscheidungstabellen werden zum Testen der Umsetzung von Anforderungen verwendet, die
angeben, wie verschiedene Kombinationen von Bedingungen zu unterschiedlichen
Ergebnissen führen. Entscheidungstabellen sind ein effektives Mittel zur Erfassung komplexer
Logik, wie z. B. Geschäftsregeln.

Bei der Erstellung von Entscheidungstabellen werden die Bedingungen und die daraus
resultierenden Aktionen des Systems definiert. Diese bilden die Zeilen der Tabelle. Jede
Spalte entspricht einer Entscheidungsregel, die eine eindeutige Kombination von
Bedingungen zusammen mit den zugehörigen Aktionen definiert. In Entscheidungstabellen mit
eingeschränkter Eingabe werden alle Werte der Bedingungen und Aktionen (mit Ausnahme
der irrelevanten oder undurchführbaren, siehe unten) als boolesche Werte (wahr oder falsch)
dargestellt. Alternativ können in Entscheidungstabellen mit erweiterter Eingabe einige oder

Certified Tester
Foundation Level

Version 4.0.2 Seite 48 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

alle Bedingungen und Aktionen auch mehrere Werte annehmen (z. B. Zahlenbereiche,
Äquivalenzklassen, Einzelwerte).

Die Notation für Bedingungen ist wie folgt: "J" (wahr) bedeutet, dass die Bedingung erfüllt ist.
"N" (falsch) bedeutet, dass die Bedingung nicht erfüllt ist. "-" bedeutet, dass der Wert der
Bedingung für das Ergebnis der Aktion irrelevant ist. "N/A" bedeutet, dass die Bedingung für
eine bestimmte Regel nicht durchführbar ist. Für Aktionen: "X" bedeutet, dass die Aktion
stattfinden sollte. Leer bedeutet, dass die Aktion nicht eintreten sollte. Es können auch andere
Notationen verwendet werden.

Eine vollständige Entscheidungstabelle hat genügend Spalten, um jede Kombination von
Bedingungen abzudecken. Die Tabelle kann vereinfacht werden, indem Spalten mit
undurchführbaren Kombinationen von Bedingungen gelöscht werden. Die Tabelle kann auch
minimiert werden, indem Spalten, in denen einige Bedingungen keinen Einfluss auf das
Ergebnis haben, in einer einzigen Spalte zusammengefasst werden. Algorithmen zur
Minimierung von Entscheidungstabellen sind nicht Gegenstand dieses Lehrplans.

Beim Entscheidungstabellentest sind die Überdeckungselemente die Spalten, die ausführbare
Kombinationen von Bedingungen enthalten. Um mit diesem Verfahren eine 100%ige
Überdeckung zu erreichen, müssen die Testfälle alle diese Spalten ausführen. Die
Überdeckung wird gemessen als die Anzahl der ausgeführten Spalten, geteilt durch die
Gesamtzahl der ausführbaren Spalten, und wird in Prozent ausgedrückt.

Die Stärke des Entscheidungstabellentests liegt darin, dass er einen systematischen Ansatz
zur Identifizierung aller Kombinationen von Bedingungen bietet, von denen einige andernfalls
übersehen werden könnten. Er hilft auch, Lücken oder Widersprüche in den Anforderungen zu
finden. Wenn es viele Bedingungen gibt, kann die Anwendung aller Entscheidungsregeln sehr
zeitaufwendig sein, da die Anzahl der Regeln exponentiell mit der Anzahl der Bedingungen
wächst. In einem solchen Fall kann eine minimierte Entscheidungstabelle oder ein
risikobasierter Ansatz verwendet werden, um die Anzahl der auszuführenden Regeln zu
reduzieren.

4.2.4 Zustandsübergangstest

Ein Zustandsdiagramm modelliert das Verhalten eines Systems, indem es seine möglichen
Zustände und gültigen Übergänge aufzeigt. Ein Übergang wird durch ein Ereignis ausgelöst,
das zusätzlich durch eine Wächterbedingung (engl. guard condition) qualifiziert werden kann.
Es wird davon ausgegangen, dass die Übergänge augenblicklich erfolgen und manchmal dazu
führen, dass die Software eine Aktion ausführt. Die übliche Syntax zur Kennzeichnung von
Übergängen lautet wie folgt: "Ereignis [Wächterbedingung] / Aktion". Wächterbedingungen
und Aktionen können weggelassen werden, wenn sie nicht existieren oder für den Tester
irrelevant sind.

Eine Zustandstabelle ist ein Modell, das einem Zustandsdiagramm entspricht. Ihre Zeilen
stellen Zustände dar, ihre Spalten Ereignisse (zusammen mit Wächterbedingungen, falls
vorhanden). Die Tabelleneinträge (Zellen) stellen Übergänge dar und enthalten den
Zielzustand sowie die daraus resultierenden Aktionen, falls definiert. Im Gegensatz zum
Zustandsdiagramm zeigt die Zustandstabelle explizit ungültige Übergänge an, die durch leere
Zellen dargestellt werden.

Certified Tester
Foundation Level

Version 4.0.2 Seite 49 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Ein Testfall, der auf einem Zustandsdiagramm oder einer Zustandstabelle basiert, wird in der
Regel als eine Folge von Ereignissen dargestellt, die zu einer Abfolge von
Zustandsänderungen (und ggf. Aktionen) führt. Ein Testfall kann und wird üblicherweise
mehrere Übergänge zwischen den Zuständen abdecken.

Es gibt viele Überdeckungskriterien für Zustandsübergangstests. In diesem Lehrplan werden
drei von ihnen behandelt.

Bei der Überdeckung aller Zustände sind die Überdeckungselemente die Zustände. Um eine
100%ige Überdeckung aller Zustände zu erreichen, müssen die Testfälle sicherstellen, dass
alle Zustände ausgeführt werden. Die Überdeckung wird als Anzahl der ausgeführten
Zustände, geteilt durch die Gesamtzahl der Zustände, gemessen und in Prozent ausgedrückt.

Bei der Überdeckung der gültigen Übergänge (auch 0-Switch-Überdeckung genannt)
handelt es sich bei den Überdeckungselementen um einzelne gültige Übergänge. Um eine
100%ige Überdeckung der gültigen Übergänge zu erreichen, müssen die Testfälle alle gültigen
Übergänge ausführen. Die Überdeckung wird als Anzahl der ausgeführten gültigen
Übergänge, geteilt durch die Gesamtzahl der gültigen Übergänge, gemessen und in Prozent
ausgedrückt.

Bei der Überdeckung aller Übergänge handelt es sich bei den Überdeckungselementen um
alle Übergänge, die in einer Zustandstabelle aufgeführt sind. Um eine 100%ige Überdeckung
aller Übergänge zu erreichen, müssen die Testfälle alle gültigen Übergänge ausführen und
versuchen, ungültige Übergänge auszuführen. Das Testen von nur einem ungültigen
Übergang in einem einzigen Testfall hilft dabei, Fehlermaskierung zu vermeiden, d. h. eine
Situation, in der ein Fehlerzustand die Entdeckung eines anderen verhindert. Die Überdeckung
wird als Anzahl der gültigen und ungültigen Übergänge, die durch die Testfälle ausgeführt oder
auszuführen versucht wurden, geteilt durch die Gesamtzahl der gültigen und ungültigen
Übergänge, gemessen und in Prozent ausgedrückt.

Die Überdeckung aller Zustände ist schwächer als die Überdeckung aller gültigen Übergänge,
da sie in der Regel erreicht werden kann, ohne alle Übergänge auszuführen. Die Überdeckung
der gültigen Übergänge ist das am häufigsten verwendete Überdeckungskriterium. Eine
vollständige Überdeckung aller gültigen Übergänge garantiert eine vollständige Überdeckung
aller Zustände. Das Erreichen der vollständigen Überdeckung aller Übergänge garantiert
sowohl die vollständige Überdeckung aller Zustände als auch die vollständige Überdeckung
der gültigen Übergänge und sollte eine Mindestanforderung für unternehmenskritische und
sicherheitskritische Software sein.

4.3 White-Box-Testverfahren

Aufgrund ihrer Verbreitung und Einfachheit konzentriert sich dieser Abschnitt auf zwei
codebezogene White-Box-Testverfahren:

• Anweisungstest

• Zweigtest

Certified Tester
Foundation Level

Version 4.0.2 Seite 50 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Es gibt gründlichere White-Box-Testverfahren, die in einigen sicherheitskritischen,
unternehmenskritischen oder hochgradig integrierten Umgebungen eingesetzt werden, um
eine gründlichere Codeüberdeckung zu erreichen. Es gibt auch White-Box-Testverfahren, die
in höheren Teststufen eingesetzt werden (z. B. bei API-Test) oder die Überdeckungen
verwenden, die sich nicht auf den Code beziehen (z. B. Neuronenüberdeckung beim Testen
von neuronalen Netzen). Diese Verfahren werden in diesem Lehrplan nicht behandelt.

4.3.1 Anweisungstest und Anweisungsüberdeckung

Beim Anweisungstest sind die Überdeckungselemente ausführbare Anweisungen. Ziel ist es,
Testfälle zu entwerfen, um die Anweisungen im Code auszuführen, bis eine akzeptable
Anweisungsüberdeckung erreicht ist. Die Überdeckung wird als Anzahl der durch die Testfälle
ausgeführten Anweisungen, geteilt durch die Gesamtzahl der ausführbaren Anweisungen im
Code, gemessen und in Prozent ausgedrückt.

Wenn eine Anweisungsüberdeckung von 100 % erreicht wird, ist sichergestellt, dass alle
ausführbaren Anweisungen im Code mindestens einmal ausgeführt worden sind. Dies
bedeutet insbesondere, dass jede Anweisung mit einem Fehlerzustand ausgeführt wird, was
zu einer Fehlerwirkung führen kann, die das Vorhandensein des Fehlerzustands beweist. Das
Ausführen einer Anweisung mit einem Testfall wird jedoch nicht in allen Fällen Fehlerzustände
aufdecken. So werden beispielsweise Fehlerzustände, die datenabhängig sind, nicht erkannt
(z. B. eine Division durch null, die nur fehlschlägt, wenn der Nenner auf null gesetzt wird). Auch
eine 100%ige Anweisungsüberdeckung stellt nicht sicher, dass die gesamte Entscheidungs-
logik getestet wurde, da z. B. nicht alle Verzweigungen (siehe Abschnitt 4.3.2) des Codes
ausgeführt werden können.

4.3.2 Zweigtest und Zweigüberdeckung

Ein Zweig ist ein Kontrollübergang zwischen zwei Knoten im Kontrollflussgraph, der die
möglichen Sequenzen aufzeigt, in denen Quellcodeanweisungen im Testobjekt ausgeführt
werden. Jeder Kontrollübergang kann entweder bedingungslos (d. h. geradliniger Code) oder
bedingt (d. h. ein Entscheidungsergebnis) sein.

Beim Zweigtest sind die Überdeckungselemente Zweige, und das Ziel ist es, Testfälle zu
entwerfen, um die Zweige im Code auszuführen, bis ein akzeptabler Überdeckungsgrad
erreicht ist. Die Messgröße der Zweigüberdeckung erfolgt als Anzahl der durch die Testfälle
ausgeführten Zweige, geteilt durch die Gesamtzahl der Zweige, und wird in Prozent
ausgedrückt.

Wenn eine 100%ige Zweigüberdeckung erreicht ist, werden alle Zweige des Codes,
unbedingte und bedingte, durch Testfälle ausgeführt. Bedingte Verzweigungen entsprechen
typischerweise einem wahren oder falschen Ergebnis einer "if...then"-Entscheidung, einem
Ergebnis einer switch/case-Anweisung oder einer Entscheidung über den Austritt oder die
Fortsetzung einer Schleife. Das Ausführen eines Zweigs mit einem Testfall wird jedoch nicht
in allen Fällen Fehlerzustände aufdecken. So werden beispielsweise Fehlerzustände, die die
Ausführung eines bestimmten Pfades in einem Code erfordern, nicht erkannt.

Certified Tester
Foundation Level

Version 4.0.2 Seite 51 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Zweigüberdeckung schließt Anweisungsüberdeckung ein. Das bedeutet, dass jeder Satz von
Testfällen, der eine 100%ige Zweigüberdeckung erreicht, auch eine 100%ige
Anweisungsüberdeckung erreicht (aber nicht umgekehrt).

4.3.3 Der Wert des White-Box-Tests

Eine grundlegende Stärke, die allen White-Box-Testverfahren gemeinsam ist, besteht darin,
dass beim Testen die gesamte Softwareimplementierung berücksichtigt wird, was die
Erkennung von Fehlerzuständen auch dann erleichtert, wenn die Softwarespezifikation vage,
veraltet oder unvollständig ist. Ein entsprechender Schwachpunkt besteht darin, dass White-
Box-Tests, wenn die Software eine oder mehrere Anforderungen nicht erfüllt, die daraus
resultierenden Fehlerzustände möglicherweise nicht erkennen (Watson 1996).

White-Box-Testverfahren können beim statischen Testen eingesetzt werden (z. B. bei Dry
Runs (Probeläufen) von Code). Sie eignen sich gut für das Review von Code, der noch nicht
ausführbar ist (Hetzel 1988), sowie von Pseudocode und anderer High-Level- oder Top-down-
Logik, die mit einem Kontrollflussgraph modelliert werden kann.

Die Durchführung von Black-Box-Tests allein liefert keine Messgröße der tatsächlichen
Codeüberdeckung. White-Box-Tests bieten eine objektive Messgröße der Überdeckung und
die notwendigen Informationen, um zusätzliche Tests zu generieren, die die Überdeckung
erhöhen und somit das Vertrauen in den Code stärken.

4.4 Erfahrungsbasierte Testverfahren

Übliche erfahrungsbasierte Testverfahren werden in den folgenden Abschnitten besprochen:

• Intuitive Testfallermittlung

• Explorativer Test

• Checklistenbasierter Test

4.4.1 Intuitive Testfallermittlung

Die intuitive Testfallermittlung ist ein Testverfahren zur Vorhersage des Auftretens von
Fehlhandlungen, Fehlerzuständen und Fehlerwirkungen, das auf dem Wissen des Testers
basiert, dazu gehören:

• Wie die Anwendung in der Vergangenheit funktioniert hat.

• Die Arten von Fehlhandlungen, zu denen die Entwickler neigen, und die Arten von
Fehlerzuständen, die aus diesen Fehlhandlungen resultieren.

• Die Arten von Fehlerwirkungen, die in anderen, ähnlichen Anwendungen aufgetreten
sind.

Im Allgemeinen können sich Fehlhandlungen, Fehlerzustände und Fehlerwirkungen auf
Folgendes beziehen: Eingabe (z. B. korrekte Eingabe nicht akzeptiert, falsche oder fehlende
Parameter), Ausgabe (z. B. falsches Format, falsches Ergebnis), Logik (z. B. fehlende Fälle,

Certified Tester
Foundation Level

Version 4.0.2 Seite 52 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

falscher Operator), Berechnung (z. B. falscher Operand, falsche Berechnung), Schnittstellen
(z. B. falsche Parameterzuordnung, inkompatible Typen) oder Daten (z. B. falsche
Initialisierung, falscher Typ).

Fehlerangriffe sind eine Möglichkeit der intuitiven Testfallermittlungen. Bei diesem
Testverfahren muss der Tester eine Liste möglicher Fehlhandlungen, Fehlerzustände und
Fehlerwirkungen erstellen oder übernehmen und Tests entwerfen, die die mit den
Fehlhandlungen verbundenen Fehlerzustände identifizieren, die Fehlerzustände aufdecken
oder die Fehlerwirkungen verursachen. Diese Listen können auf der Grundlage von Er-
fahrungswerten, Daten über Fehlerzustände und Fehlerwirkungen oder auf der Grundlage des
allgemeinen Wissens darüber, warum Software fehlschlägt, erstellt werden.

Siehe (Whittaker 2002, Whittaker 2003, Andrews 2006) für weitere Informationen über intuitive
Testfallermittlungen und Fehlerangriffe.

4.4.2 Explorativer Test

Beim explorativen Test werden Tests gleichzeitig entworfen, ausgeführt und bewertet,
während der Tester mehr über das Testobjekt erfährt. Neben dem genauen Kennenlernen des
Testobjekts wird das Testobjekt mit gezielten Tests gründlicher erforscht und weitere Tests für
ungetestete Bereiche erstellt.

Exploratives Testen wird manchmal als sitzungsbasierter Test durchgeführt, um das Testen
zu strukturieren. Bei einem sitzungsbasierten Ansatz wird der explorative Test innerhalb eines
bestimmten Zeitrahmens durchgeführt. Der Tester verwendet eine Test-Charta mit Testzielen,
um das Testen zu steuern. An die Testsitzung schließt sich in der Regel eine
Nachbesprechung an, in der der Tester mit den an den Testergebnissen interessierten
Beteiligten diskutiert. Bei dieser Testvorgehensweise können abstrakte Testbedingungen als
Testziele behandelt werden. Überdeckungselemente werden während der Testsitzung
identifiziert und ausgeführt. Der Tester kann Testsitzungsblätter (engl. session sheets)
verwenden, um die durchgeführten Schritte und die gemachten Erkenntnisse zu
dokumentieren.

Explorative Tests sind sinnvoll, wenn es nur wenige oder unzureichende Spezifikationen gibt
oder der Zeitdruck beim Testen groß ist. Explorative Tests sind auch als Ergänzung zu ande-
ren, eher formalen Testverfahren sinnvoll. Exploratives Testen ist effektiver, wenn der Tester
erfahren ist, über Fachkenntnisse verfügt und ein hohes Maß an grundlegenden Kompetenzen
wie analytische Fähigkeiten, Neugier und Kreativität besitzt (siehe Abschnitt 1.5.1).

Beim explorativen Test können auch andere Testverfahren zum Einsatz kommen (z. B.
Äquivalenzklassenbildung). Weitere Informationen zum explorativen Testen finden sich in
(Kaner 1999, Whittaker 2009, Hendrickson 2013).

4.4.3 Checklistenbasierter Test

Beim checklistenbasierten Test entwirft, implementiert und führt ein Tester Tests aus, um
Testbedingungen aus einer Checkliste abzudecken. Checklisten können auf der Grundlage
von Erfahrungen, auf dem Wissen darüber, was für den Benutzer wichtig ist, oder einem
Verständnis darüber, warum und wie Software fehlgeschlagen ist, erstellt werden. Checklisten

Certified Tester
Foundation Level

Version 4.0.2 Seite 53 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

sollten keine Elemente enthalten, die automatisch geprüft werden können, Elemente, die sich
besser als Eingangskriterien oder Endekriterien eignen, oder Elemente, die zu allgemein sind
(Brykczynski 1999).

Die Elemente der Checkliste sind häufig in Form von Fragen formuliert. Es sollte möglich sein,
jedes Element einzeln und direkt zu prüfen. Diese Elemente können sich auf Anforderungen,
Eigenschaften grafischer Benutzungsoberflächen, Qualitätsmerkmale oder andere Formen
von Testbedingungen beziehen. Checklisten können zur Unterstützung verschiedener
Testarten, einschließlich funktionaler und nicht-funktionaler Tests, erstellt werden (z. B. 10
Heuristiken für Gebrauchstauglichkeitstests (Nielsen 1994)).

Einige Checklisteneinträge können im Laufe der Zeit an Effektivität verlieren, weil die
Entwickler lernen, dieselben Fehlhandlungen zu vermeiden. Neue Einträge müssen
möglicherweise auch hinzugefügt werden, um neu gefundene Fehlerzustände mit hohem
Fehlerschweregrad zu berücksichtigen. Daher sollten Checklisten regelmäßig auf der
Grundlage von Fehlerzuständen aktualisiert werden. Es sollte jedoch darauf geachtet werden,
dass die Checkliste nicht zu lang wird (Gawande 2009).

Beim Fehlen detaillierter Testfälle kann das checklistenbasierte Testen Richtlinien und ein
gewisses Maß an Konsistenz für das Testen bieten. Wenn die Checklisten generisch sind, ist
eine gewisse Variabilität beim tatsächlichen Testen wahrscheinlich, was zu einer potenziell
größeren Überdeckung, aber weniger Wiederholbarkeit führt.

4.5 Auf Zusammenarbeit basierende Testansätze

Jedes der oben erwähnten Testverfahren (siehe Abschnitte 4.2, 4.3, 4.4) verfolgt ein
bestimmtes Ziel im Hinblick auf die Erkennung von Fehlerzuständen. Auf Zusammenarbeit
basierende Ansätze hingegen konzentrieren sich auch auf die Vermeidung von
Fehlerzuständen durch Zusammenarbeit und Kommunikation.

4.5.1 Gemeinsames Schreiben von User-Storys

Eine User-Story repräsentiert ein Feature, das für einen Benutzer oder Käufer eines Systems
oder einer Software nützlich sein wird. User-Storys haben drei kritische Aspekte (Jeffries
2000), die zusammen die "3 Cs" genannt werden:

• Karte (Card) – das Medium, das eine User-Story beschreibt (z. B. eine Karteikarte, ein
Eintrag auf einem elektronischen Board)

• Konversation (Conversation) – erklärt, wie die Software genutzt werden soll (kann
dokumentiert oder mündlich erfolgen)

• Bestätigung (Confirmation) – die Akzeptanzkriterien (siehe Abschnitt 4.5.2)

Das gängigste Format für eine User-Story ist "Als [Rolle] möchte ich, dass [das zu erreichende
Ziel], so dass ich [resultierender Nutzen für die Rolle]", gefolgt von den Akzeptanzkriterien.

Für die Zusammenarbeit bei der Erstellung der User-Story können Verfahren wie
Brainstorming und Mind-Mapping eingesetzt werden. Die Zusammenarbeit ermöglicht es dem

Certified Tester
Foundation Level

Version 4.0.2 Seite 54 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Team, eine gemeinsame Vision von dem zu erhalten, was geliefert werden soll, indem drei
Perspektiven berücksichtigt werden: Fachlichkeit, Entwicklung und Testen.

Gute User-Storys sollten sein: unabhängig (independent), verhandelbar (negotiable), nützlich
(valuable), schätzbar (estimable), klein (small) und testbar (testable) (INVEST-Prinzip). Wenn
ein Stakeholder nicht weiß, wie er eine User-Story testen soll, kann dies darauf hindeuten,
dass die User-Story nicht klar genug ist, dass sie für ihn keinen erkennbaren Mehrwert darstellt
oder dass der Stakeholder einfach Hilfe beim Testen benötigt (Wake 2003).

4.5.2 Akzeptanzkriterien

Akzeptanzkriterien für eine User-Story sind die Bedingungen, die eine Implementierung der
User-Story erfüllen muss, um von den Stakeholdern akzeptiert zu werden. Aus dieser
Perspektive können Akzeptanzkriterien als die Testbedingungen betrachtet werden, die durch
die Tests ausgeführt werden sollten. Akzeptanzkriterien sind in der Regel ein Ergebnis der
Diskussion (siehe Abschnitt 4.5.1).

Akzeptanzkriterien werden verwendet, um

• den Umfang der User-Story zu definieren,

• einen Konsens zwischen den Stakeholdern zu erreichen,

• sowohl positive als auch negative Szenarien zu beschreiben,

• als Basis für Abnahmetests der User-Story zu dienen (siehe Abschnitt 4.5.3) sowie

• eine genaue Planung und Schätzung zu ermöglichen.

Es gibt mehrere Möglichkeiten, Akzeptanzkriterien für eine User-Story zu formulieren. Die zwei
gängigsten Formate sind:

• Szenarioorientiert (z. B. das Gegeben/Wenn/Dann-Format, das in der
verhaltensgetriebenen Entwicklung (BDD) verwendet wird, siehe Abschnitt 2.1.3)

• Regelorientiert (z. B. Verifizierungsliste mit Aufzählungspunkten oder tabellarische
Form der Input-Output-Zuordnung)

Die meisten Akzeptanzkriterien lassen sich in einem der beiden Formate dokumentieren. Das
Team kann jedoch auch ein anderes, benutzerdefiniertes Format verwenden, solange die
Akzeptanzkriterien klar definiert und eindeutig sind.

4.5.3 Abnahmetestgetriebene Entwicklung (ATDD)

ATDD ist ein Test-First-Ansatz (siehe Abschnitt 2.1.3). Testfälle werden vor der
Implementierung der User-Story erstellt. Die Testfälle werden von Teammitgliedern mit
unterschiedlichen Perspektiven erstellt, z. B. von Kunden, Entwicklern und Testern (Adzic
2009). Die Testfälle können manuell oder automatisiert ausgeführt werden.

Der erste Schritt ist ein Spezifikationsworkshop, in dem die User-Story und (falls noch nicht
definiert) deren Akzeptanzkriterien von den Teammitgliedern analysiert, diskutiert und

Certified Tester
Foundation Level

Version 4.0.2 Seite 55 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

geschrieben werden. Unvollständigkeiten, Mehrdeutigkeiten oder Fehlerzustände in der User-
Story werden in diesem Prozess behoben. Der nächste Schritt ist die Erstellung der Testfälle.
Dies kann durch das Team als Ganzes oder durch einen einzelnen Tester geschehen. Die
Testfälle basieren auf den Akzeptanzkriterien und können als Beispiele für die Funktionsweise
der Software angesehen werden. Dies hilft dem Team, die User-Story korrekt umzusetzen.

Da Beispiele und Tests dasselbe sind, werden diese Begriffe oft synonym verwendet.
Während des Testentwurfs können die in den Abschnitten 4.2, 4.3 und 4.4 beschriebenen
Testverfahren angewandt werden.

Typischerweise sind die ersten Testfälle positiv, bestätigen das korrekte Verhalten ohne
Ausnahmen oder Fehlerbedingungen und umfassen die Abfolge der Aktivitäten, die ausgeführt
werden, wenn alles wie erwartet abläuft. Nachdem die positiven Testfälle abgeschlossen sind,
sollte das Team Negativtests durchführen. Schließlich sollte das Team nicht-funktionale
Qualitätsmerkmale abdecken (z. B. Performanz, Gebrauchstauglichkeit). Testfälle sollten so
formuliert werden, dass sie für die Stakeholder verständlich sind. In der Regel bestehen
Testfälle aus Sätzen in natürlicher Sprache, die die notwendigen Vorbedingungen (falls
vorhanden), die Eingaben und die Nachbedingungen enthalten.

Die Testfälle müssen alle Merkmale der User-Story abdecken und sollten nicht über sie
hinausgehen. Die Akzeptanzkriterien können jedoch auf einige der in der User-Story
beschriebenen Probleme eingehen. Darüber hinaus sollten keine zwei Testfälle dieselben
Merkmale der User-Story beschreiben.

Wenn die Testfälle in einem Format erfasst werden, das von einem Testautomatisierungs-
framework unterstützt wird, können die Entwickler die Testfälle automatisieren, indem sie den
unterstützenden Code schreiben, während sie das in einer User-Story beschriebene Feature
implementieren. Die Abnahmetests werden dann zu ausführbaren Anforderungen.

Certified Tester
Foundation Level

Version 4.0.2 Seite 56 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

5. Management der Testaktivitäten – 335 Minuten
Schlüsselbegriffe

Eingangskriterien, Endekriterien, Fehlerbericht, Fehlermanagement, Produktrisiko,
Projektrisiko, Risiko, Risikoanalyse, risikobasierter Test, Risikobewertung,
Risikoidentifizierung, Risikomanagement, Risikominderung, Risikosteuerung, Risikostufe,
Risikoüberwachung, Testabschlussbericht, Testansatz, Testfortschrittsbericht, Testkonzept,
Testplanung, Testpyramide, Testquadranten, Teststeuerung, Teststrategie, Testüberwachung

Lernziele für Kapitel 5: Der Lernende kann ...

5.1 Testplanung
FL-5.1.1 (K2) ... Beispiele zu Zweck und Inhalt eines Testkonzepts geben
FL-5.1.2 (K1) ... den möglichen Mehrwert, den ein Tester für die Iterations- und

Releaseplanung schafft, erkennen
FL-5.1.3 (K2) ... Eingangskriterien und Endekriterien vergleichen und gegenüberstellen
FL-5.1.4 (K3) ... Schätzverfahren zur Berechnung des erforderlichen Testaufwands

anwenden
FL-5.1.5 (K3) ... die Priorisierung von Testfällen anwenden
FL-5.1.6 (K1) ... die Konzepte der Testpyramide wiedergeben
FL-5.1.7 (K2) ... die Testquadranten und ihre Beziehungen zu Teststufen und Testarten

zusammenfassen

5.2 Risikomanagement
FL-5.2.1 (K1) ... die Risikostufe anhand der Eintrittswahrscheinlichkeit des Risikos und des

Schadensausmaßes des Risikos identifizieren
FL-5.2.2 (K2) ... zwischen Projektrisiken und Produktrisiken unterscheiden
FL-5.2.3 (K2) ... den möglichen Einfluss der Produktrisikoanalyse auf Gründlichkeit und

Umfang des Testens erklären
FL-5.2.4 (K2) ... mögliche Maßnahmen, die als Reaktion auf analysierte Produktrisiken

ergriffen werden können, erklären

5.3 Testüberwachung, Teststeuerung und Testabschluss
FL-5.3.1 (K1) ... die beim Testen verwendeten Metriken wiedergeben
FL-5.3.2 (K2) ... Zweck, Inhalt und Zielgruppen von Testberichten zusammenfassen
FL-5.3.3 (K2) ... Beispiele geben, wie man den Teststatus kommunizieren kann

5.4 Konfigurationsmanagement
FL-5.4.1 (K2) ... eine mögliche Unterstützung des Testens durch das

Konfigurationsmanagement zusammenfassen

5.5 Fehlermanagement
FL-5.5.1 (K3) ... einen Fehlerbericht erstellen

Certified Tester
Foundation Level

Version 4.0.2 Seite 57 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

5.1 Testplanung

5.1.1 Zweck und Inhalt eines Testkonzepts

Ein Testkonzept beschreibt die Testziele, Ressourcen und Prozesse für ein Testprojekt. Ein
Testkonzept

• dokumentiert die Mittel und den Zeitplan zur Erreichung der Testziele,

• hilft sicherzustellen, dass die durchgeführten Testaktivitäten die festgelegten Kriterien
erfüllen,

• dient als Mittel zur Kommunikation mit Teammitgliedern und anderen Stakeholdern,

• zeigt, dass sich das Testen an die bestehende Testrichtlinie und Teststrategie hält
(oder erklärt, warum das Testen davon abweicht).

Die Testplanung gibt den Testern Denkanstöße und zwingt sie, sich mit den zukünftigen
Herausforderungen in Bezug auf Risiken, Zeitpläne, Mitarbeiter, Werkzeuge, Kosten, Aufwand
usw. auseinanderzusetzen. Der Prozess der Erstellung eines Testkonzepts ist eine nützliche
Vorgehensweise, um die Maßnahmen zu überdenken, die zum Erreichen der Testziele
erforderlich sind.

Zu den typischen Inhalten eines Testkonzepts gehören:

• Kontext des Testens (z. B. Testumfang,, Testziele, Testbasis)

• Annahmen und Einschränkungen des Testprojekts

• Stakeholder (z. B. Rollen, Verantwortlichkeiten, Relevanz für das Testen, Einstellung
und Schulungsbedarf)

• Kommunikation (z. B. Formen und Häufigkeit der Kommunikation,
Dokumentationsvorlagen)

• Risikoverzeichnis (z. B. Produktrisiken, Projektrisiken)

• Testansatz (z. B. Teststufen, Testarten, Testverfahren, Testliefergegenstände,
Eingangskriterien und Endekriterien, Unabhängigkeit des Testens, zu erhebende
Metriken, Anforderungen an Testdaten, Anforderungen an die Testumgebung,
Abweichungen von der Testrichtlinie und Teststrategie)

• Budget und Zeitplan

Weitere Einzelheiten über das Testkonzept und seinen Inhalt sind in der Norm ISO/IEC/IEEE
29119-3 zu finden.

5.1.2 Der Beitrag des Testers zur Iterations- und Releaseplanung

In iterativen SDLCs gibt es typischerweise zwei Arten von Planung: Releaseplanung und
Iterationsplanung.

Certified Tester
Foundation Level

Version 4.0.2 Seite 58 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Die Releaseplanung sieht die Bereitstellung eines Produkts vor, definiert das Produkt-
Backlog bzw. passt es an und kann die Verfeinerung größerer User-Storys in eine Reihe
kleinerer User-Storys beinhalten. Sie dient auch als Grundlage für den Testansatz und das
Testkonzept über alle Iterationen. Tester, die an der Releaseplanung mitwirken, beteiligen sich
an der Erstellung testbarer User-Storys und Akzeptanzkriterien (siehe Abschnitt 4.5), nehmen
an Projekt- und Qualitätsrisikoanalysen teil (siehe Abschnitt 5.2), schätzen den mit den User-
Storys verbundenen Testaufwand (siehe Abschnitt 5.1.4), legen den Testansatz fest und
planen die Tests für das Release.

Die Iterationsplanung sieht das Ende einer einzelnen Iteration voraus und befasst sich mit
dem Iterations-Backlog. Die an der Iterationsplanung beteiligten Tester nehmen an der
detaillierten Risikoanalyse der User-Storys teil, bestimmen die Testbarkeit der User-Storys ,
zerlegen die User-Storys in Aufgaben (insbesondere Testaufgaben), schätzen den
Testaufwand für alle Testaufgaben und identifizieren und verfeinern die funktionalen und nicht-
funktionalen Aspekte des Testobjekts.

5.1.3 Eingangskriterien und Endekriterien

Eingangskriterien definieren die Vorbedingungen für die Durchführung einer bestimmten
Aktivität. Wenn die Eingangskriterien nicht erfüllt sind, ist es wahrscheinlich, dass sich die
Aktivität als schwieriger, zeitaufwendiger, kostspieliger und risikoreicher erweist. Die
Endekriterien legen fest, was erreicht werden muss, um eine Aktivität für abgeschlossen zu
erklären. Eingangskriterien und Endekriterien sollten für jede Teststufe definiert werden und
unterscheiden sich je nach den Testzielen.

Typische Eingangskriterien sind: Verfügbarkeit von Ressourcen (z. B. Menschen, Werkzeuge,
Umgebungen, Testdaten, Budget, Zeit), Verfügbarkeit von Testmitteln (z. B. Testbasis,
testbare Anforderungen, User-Storys, Testfälle) und die anfängliche Qualität eines Testobjekts
(z. B. alle Smoke-Tests wurden bestanden).

Typische Endekriterien sind: Messungen der Gründlichkeit (z. B. erreichter
Überdeckungsgrad, Anzahl der ungelösten Fehlerzustände, Fehlerdichte, Anzahl der
fehlgeschlagenen Testfälle) und binäre „ja/nein“-Kriterien (z. B. geplante Tests wurden
ausgeführt, statische Tests wurden ausgeführt, alle gefundenen Fehlerzustände werden
berichtet, alle Regressionstests sind automatisiert).

Auch aufgebrauchte Zeit oder ausgeschöpftes Budget können als gültige Endekriterien
betrachtet werden. Auch wenn keine anderen Akzeptanzkriterien erfüllt sind, kann es
akzeptabel sein, das Testen unter solchen Umständen zu beenden, wenn die Stakeholder das
Risiko, ohne weitere Tests in Betrieb zu gehen, geprüft und akzeptiert haben.

In der agilen Softwareentwicklung werden die Endekriterien oft als Definition-of-Done
bezeichnet, die die objektiven Metriken des Teams für ein freizugebendes Element definieren.
Eingangskriterien, die eine User-Story erfüllen muss, um mit der Entwicklung und/oder dem
Testen zu beginnen, werden als Definition-of-Ready bezeichnet.

Certified Tester
Foundation Level

Version 4.0.2 Seite 59 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

5.1.4 Schätzverfahren

Bei der Schätzung des Testaufwands geht es um die Vorhersage des Umfangs der
testbezogenen Arbeit, die erforderlich ist, um die Testziele eines Testprojekts zu erreichen. Es
ist wichtig, den Stakeholdern klarzumachen, dass die Schätzung auf einer Reihe von
Annahmen beruht und immer mit Schätzfehlern behaftet ist. Die Schätzung für kleine
Aufgaben ist in der Regel genauer als für große Aufgaben. Bei der Schätzung einer großen
Aufgabe kann diese daher in eine Reihe kleinerer Aufgaben zerlegt werden, die dann ihrerseits
geschätzt werden können.

In diesem Lehrplan werden die folgenden vier Verfahren zur Schätzung beschrieben:

Schätzung basierend auf Verhältniszahlen: Bei diesem metrikbasierten Verfahren werden
Zahlen aus früheren Projekten innerhalb des Unternehmens gesammelt, was die Ableitung
von "Standard"-Verhältniszahlen für ähnliche Projekte ermöglicht. Die Kennzahlen der eigenen
Projekte eines Unternehmens (z. B. aus historischen Daten) sind im Allgemeinen die beste
Quelle für den Schätzprozess. Diese Standard-Verhältniszahlen können dann zur Schätzung
des Testaufwands für das neue Projekt verwendet werden. Wenn beispielsweise im
vorherigen Projekt das Verhältnis von Entwicklungs- zu Testaufwand 3:2 war und im aktuellen
Projekt ein Entwicklungsaufwand von 600 Personentagen erwartet wird, kann der
Testaufwand auf 400 Personentage geschätzt werden.

Extrapolation: Bei diesem auf Metriken basierenden Verfahren werden Messungen so früh
wie möglich im laufenden Projekt durchgeführt, um die Daten zu sammeln. Wenn genügend
Beobachtungen vorliegen, kann der für die verbleibende Arbeit erforderliche Aufwand durch
Extrapolation dieser Daten (in der Regel durch Anwendung eines mathematischen Modells)
angenähert werden. Diese Methode eignet sich sehr gut für iterative SDLCs. Zum Beispiel
kann das Team den Testaufwand in der nächsten Iteration als den durchschnittlichen Aufwand
der letzten drei Iterationen extrapolieren.

Breitband-Delphi: Bei diesem iterativen, expertenbasierten Verfahren nehmen die Experten
erfahrungsbasierte Schätzungen vor. Jeder Experte schätzt für sich allein den Aufwand. Die
Ergebnisse werden gesammelt, und wenn es Schätzabweichungen eines Experten gibt, die
außerhalb der vereinbarten Grenzen liegen, diskutieren die Experten ihre aktuellen
Schätzungen. Jeder Experte wird dann gebeten, auf der Grundlage dieser Rückmeldungen
eine neue Schätzung vorzunehmen, wiederum für sich allein. Dieser Prozess wird so lange
wiederholt, bis ein Konsens erreicht ist. Planungspoker ist eine Variante von Breitband-Delphi,
die häufig in der agilen Softwareentwicklung eingesetzt wird. Beim Planungspoker werden
Schätzungen in der Regel mit Hilfe von Karten mit Zahlen vorgenommen, die die Höhe des
Aufwands darstellen.

Drei-Punkt-Schätzung: Bei diesem expertenbasierten Verfahren werden drei Schätzungen
von den Experten vorgenommen: die optimistischste Schätzung (a), die wahrscheinlichste
Schätzung (m) und die pessimistischste Schätzung (b). Die finale Schätzung (E) ist ihr
gewichtetes arithmetisches Mittel. In der am weitesten verbreiteten Version dieses Verfahrens
wird die Schätzung wie folgt berechnet: E = (a + 4*m + b) / 6. Der Vorteil dieses Verfahrens
besteht darin, dass es den Experten ermöglicht, den Schätzfehler (Standardabweichung, SD)
zu berechnen: SD = (b - a) / 6. Wenn zum Beispiel die Schätzungen (in Personenstunden)
a=6, m=9 und b=18 sind, dann liegt die endgültige Schätzung bei 10±2 Personenstunden (d. h.

Certified Tester
Foundation Level

Version 4.0.2 Seite 60 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

zwischen 8 und 12 Personenstunden), weil E = (6 + 4*9 + 18) / 6 = 10 und SD = (18 - 6) / 6 =
2.

Siehe (Kan 2003, Koomen 2006, Westfall 2009) für diese und viele andere
Testschätzverfahren.

5.1.5 Priorisierung von Testfällen

Sobald die Testfälle und Testabläufe spezifiziert und zu Testsuiten zusammengestellt sind,
können diese Testsuiten in einem Testausführungsplan angeordnet werden, der die
Reihenfolge ihrer Ausführung festlegt. Bei der Priorisierung von Testfällen können
verschiedene Faktoren in Betracht gezogen werden. Die am häufigsten verwendeten
Strategien zur Priorisierung von Testfällen sind die folgenden:

• Risikobasierte Priorisierung, bei der sich die Reihenfolge der Testdurchführung nach
den Ergebnissen der Risikoanalyse richtet (siehe Abschnitt 5.2.3). Testfälle, die die
wichtigsten Risiken überdecken, werden zuerst ausgeführt.

• Überdeckungsbasierte Priorisierung, bei der sich die Reihenfolge der
Testdurchführung nach der Überdeckung richtet (z. B. Anweisungsüberdeckung).
Testfälle, die die höchste Überdeckung erreichen, werden zuerst ausgeführt. Bei einer
anderen Variante, der Priorisierung von zusätzlicher Überdeckung, wird der Testfall mit
der höchsten Überdeckung zuerst ausgeführt; jeder nachfolgende Testfall ist derjenige,
der die höchste zusätzliche Überdeckung erreicht.

• Anforderungsbasierte Priorisierung, bei der sich die Reihenfolge der Testdurch-
führung nach den Prioritäten der Anforderungen richtet, die auf die entsprechenden
Testfälle übertragen werden. Die Prioritäten der Anforderungen werden von den
Stakeholdern festgelegt. Testfälle, die sich auf die wichtigsten Anforderungen
beziehen, werden zuerst ausgeführt.

Im Idealfall werden die Testfälle in der Reihenfolge ihrer Prioritäten ausgeführt, z. B. mit Hilfe
einer der oben genannten Priorisierungsstrategien. Diese Praktik funktioniert jedoch
möglicherweise nicht, wenn die Testfälle oder die zu testenden Features Abhängigkeiten
aufweisen. Wenn ein Testfall mit einer höheren Priorität von einem Testfall mit einer
niedrigeren Priorität abhängt, muss der Testfall mit der niedrigeren Priorität zuerst ausgeführt
werden.

Bei der Reihenfolge der Testdurchführung muss auch die Verfügbarkeit von Ressourcen
berücksichtigt werden. Zum Beispiel die erforderlichen Testwerkzeuge, Testumgebungen oder
Personen, die möglicherweise nur für ein bestimmtes Zeitfenster zur Verfügung stehen.

5.1.6 Testpyramide

Die Testpyramide ist ein Modell, das zeigt, dass verschiedene Tests eine unterschiedliche
Granularität haben können. Das Testpyramiden-Modell unterstützt das Team bei der
Testautomatisierung und bei der Verteilung des Testaufwands, indem es zeigt, dass
verschiedene Testziele durch verschiedene Stufen der Testautomatisierung unterstützt
werden. Die Ebenen der Pyramide stellen Gruppen von Tests dar. Je höher die Ebene, desto

Certified Tester
Foundation Level

Version 4.0.2 Seite 61 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

geringer ist die Testgranularität, desto niedriger ist die Testisolation (d. h. der Grad der
Abhängigkeit von anderen Systemelementen) und umso größer die Testdurchführungszeit der
Tests. Tests in der untersten Schicht sind klein, isoliert und schnell und prüfen einen kleinen
Teil der Funktionalität, so dass normalerweise viele von ihnen benötigt werden, um eine
angemessene Überdeckung zu erreichen. Die oberste Schicht repräsentiert komplexe High-
Level-End-to-End-Tests. Diese High-Level-Tests sind in der Regel langsamer als die Tests
aus den unteren Schichten und prüfen normalerweise einen großen Teil der Funktionalität, so
dass nur wenige von ihnen erforderlich sind, um einen angemessenen Überdeckungsgrad zu
erreichen. Die Anzahl und Benennung der Schichten können variieren. Das ursprüngliche
Testpyramiden-Modell (Cohn 2009) definiert zum Beispiel drei Schichten: "Unit-Tests",
"Service-Tests" und "UI-Tests". Ein anderes beliebtes Modell definiert Unittests
(Komponententests), Integrationstests (Komponentenintegrationstests) und End-to-End-
Tests. Andere Teststufen (siehe Abschnitt 2.2.1) können ebenfalls verwendet werden.

5.1.7 Testquadranten

Die von Brian Marick definierten Testquadranten (Marick 2003, Crispin 2008) gruppieren die
Teststufen mit den entsprechenden Testarten, Aktivitäten, Testverfahren und
Arbeitsergebnissen in der agilen Softwareentwicklung. Das Modell unterstützt das
Testmanagement dabei, diese zu visualisieren, um sicherzustellen, dass alle geeigneten
Testarten und Teststufen in den SDLC einbezogen werden, und um zu verstehen, dass einige
Testarten für bestimmte Teststufen relevanter sind als für andere. Dieses Modell bietet auch
eine Möglichkeit, die Testarten zu differenzieren und allen Stakeholdern, einschließlich
Entwicklern, Testern und Fachbereichsvertretern, zu beschreiben.

In diesem Modell können Tests geschäftlich orientiert oder technologieorientiert sein. Tests
können andererseits das Team unterstützen (d. h. die Entwicklung anleiten) oder das Produkt
kritisch betrachten (d. h. sein Verhalten anhand der Erwartungen messen). Die Kombination
dieser beiden Gesichtspunkte bestimmt die vier Quadranten:

• Quadrant Q1 (technologieorientiert, Unterstützung des Teams). Dieser Quadrant
enthält Komponententests und Komponentenintegrationstests. Diese Tests sollten
automatisiert und in den CI-Prozess einbezogen werden.

• Quadrant Q2 (geschäftlich orientiert, Unterstützung des Teams). Dieser Quadrant
enthält funktionale Tests, Beispiele, User-Story-basierte Tests, Prototypen für
Benutzererfahrung, API-Tests und Simulationen. Diese Tests prüfen die
Akzeptanzkriterien und können manuell oder automatisiert sein.

• Quadrant Q3 (geschäftlich orientiert, kritische Betrachtung des Produkts). Dieser
Quadrant enthält explorative Tests, Gebrauchstauglichkeitstests und
Benutzerabnahmetests. Diese Tests sind benutzerorientiert und häufig manuell.

• Quadrant Q4 (technologieorientiert, kritische Betrachtung des Produkts). Dieser
Quadrant enthält Smoke-Tests und nicht-funktionale Tests (außer
Gebrauchstauglichkeitstests). Diese Tests sind häufig automatisiert.

Certified Tester
Foundation Level

Version 4.0.2 Seite 62 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

5.2 Risikomanagement

Organisationen sind mit vielen internen und externen Faktoren konfrontiert, die es unsicher
machen, ob und wann sie ihre Ziele erreichen werden (ISO 31000). Durch Risikomanagement
können Organisationen die Wahrscheinlichkeiten der Zielerreichung erhöhen, die Qualität
ihrer Produkte verbessern und das Vertrauen der Stakeholder stärken.

Die wichtigsten Aktivitäten des Risikomanagements sind:

• Risikoanalyse (bestehend aus Risikoidentifizierung und Risikobewertung; siehe
Abschnitt 5.2.3)

• Risikosteuerung (bestehend aus Risikominderung und Risikoüberwachung; siehe
Abschnitt 5.2.4)

Der Testansatz, bei dem Testaktivitäten auf der Grundlage von Risikoanalyse und
Risikosteuerung ausgewählt, priorisiert und gesteuert werden, wird als risikobasierter Test
bezeichnet.

5.2.1 Risikodefinition und Risikoattribute

Ein Risiko ist ein potenzielles Ereignis, eine Gefahr, eine Bedrohung oder eine Situation, deren
Eintreten eine nachteilige Auswirkung verursacht. Ein Risiko kann durch zwei Faktoren
charakterisiert werden:

• Eintrittswahrscheinlichkeit des Risikos – die Wahrscheinlichkeit des Eintretens des
Risikos (größer als null und kleiner als eins)

• Schadensausmaß des Risikos (Schaden) – die Folgen des Eintretens

Diese beiden Faktoren drücken die Risikostufe aus, die ein Maß für das Risiko ist. Je höher
die Risikostufe, desto wichtiger ist die Behandlung des Risikos.

5.2.2 Projektrisiken und Produktrisiken

Beim Testen von Software hat man es im Allgemeinen mit zwei Arten von Risiken zu tun:
Projektrisiken und Produktrisiken.

Projektrisiken beziehen sich auf das Management und die Steuerung des Projekts. Zu den
Projektrisiken gehören:

• Organisatorische Probleme (z. B. Verzögerungen bei der Lieferung von
Arbeitsergebnissen, ungenaue Schätzungen, Kostenkürzungen)

• Personelle Aspekte (z. B. unzureichende Fähigkeiten, Konflikte,
Kommunikationsprobleme, Personalmangel)

• Technische Probleme (z. B. schleichende Ausweitung des Projektumfangs (engl.
scope creep), unzureichende Werkzeugunterstützung)

• Lieferantenprobleme (z. B. Lieferausfall von Drittanbietern, Konkurs des
unterstützenden Unternehmens)

Certified Tester
Foundation Level

Version 4.0.2 Seite 63 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Eingetretene Projektrisiken können Auswirkungen auf den Zeitplan, das Budget und/oder den
Umfang des Projekts haben, was die Erreichung der Projektziele beeinträchtigt.

Produktrisiken stehen im Zusammenhang mit den Qualitätsmerkmalen des Produkts (z. B.
beschrieben im Qualitätsmodell der ISO 25010). Beispiele für Produktrisiken sind: fehlende
oder falsche Funktionalität, falsche Berechnungen, Laufzeitfehler, leistungsschwache
Architektur, ineffiziente Algorithmen, unzureichende Reaktionszeit, schlechte
Benutzererfahrung, Sicherheitsschwachstellen. Produktrisiken können, wenn sie eintreten,
verschiedene negative Folgen nach sich ziehen, darunter:

• Unzufriedenheit der Benutzer

• Verlust von Einnahmen, Vertrauen und Ansehen

• Schaden für Dritte

• Hohe Wartungskosten, Überlastung des Helpdesks

• Strafrechtliche Sanktionen

• In extremen Fällen körperliche Schäden, Verletzungen oder sogar Tod

5.2.3 Produktrisikoanalyse

Aus der Sicht des Testens besteht das Ziel der Produktrisikoanalyse darin, ein Bewusstsein
für das Produktrisiko zu schaffen, um den Testaufwand so zu fokussieren, dass die
verbleibende Risikostufe des Produkts minimiert wird. Im Idealfall beginnt die Risikoanalyse
des Produktrisikos bereits in einem frühen Stadium des SDLC.

Die Produktrisikoanalyse besteht aus Risikoidentifizierung und Risikobewertung. Bei der
Risikoidentifizierung geht es um die Erstellung einer umfassenden Liste von Risiken. Die
Stakeholder können Risiken mit Hilfe verschiedener Verfahren und Werkzeuge identifizieren,
z. B. durch Brainstorming, Workshops, Interviews oder Ursache-Wirkungs-Diagramme. Die
Risikobewertung umfasst die Kategorisierung der identifizierten Risiken, die Bestimmung ihrer
Eintrittswahrscheinlichkeit, des Schadensausmaßes und der Risikostufe sowie die
Priorisierung und Vorschläge für den Umgang mit den Risiken. Die Kategorisierung hilft bei
der Zuweisung von Maßnahmen zur Risikominderung, da Risiken, die in dieselbe Kategorie
fallen, in der Regel mit einem ähnlichen Ansatz gemindert werden können.

Bei der Risikobewertung kann ein quantitativer oder qualitativer Ansatz oder eine Mischung
aus beidem verwendet werden. Beim quantitativen Ansatz wird die Risikostufe als
Multiplikation von Eintrittswahrscheinlichkeit des Risikos und Schadensausmaß des Risikos
berechnet. Beim qualitativen Ansatz kann die Risikostufe anhand einer Risikomatrix bestimmt
werden.

Die Risikoanalyse des Produktrisikos kann die Gründlichkeit und den Testumfang
beeinflussen. Ihre Ergebnisse werden verwendet, um

• den durchzuführenden Testumfang zu bestimmen,

• die einzelnen Teststufen zu bestimmen und Testarten vorzuschlagen, die durchgeführt
werden sollen,

Certified Tester
Foundation Level

Version 4.0.2 Seite 64 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• die einzusetzenden Testverfahren und die zu erreichende Überdeckung festzulegen,

• den Testaufwand für jede Aufgabe zu schätzen,

• Tests zu priorisieren, um die kritischen Fehlerzustände so früh wie möglich zu finden,
sowie

• festzustellen, ob neben dem Testen weitere Aktivitäten zur Verringerung des Risikos
eingesetzt werden können.

5.2.4 Produktrisikosteuerung

Die Steuerung von Produktrisiken umfasst alle Maßnahmen, die als Reaktion auf identifizierte
und bewertete Produktrisiken ergriffen werden. Die Produktrisikosteuerung besteht aus
Risikominderung und Risikoüberwachung. Bei der Risikominderung geht es darum, die in der
Risikobewertung vorgeschlagenen Maßnahmen zur Verringerung der Risikostufe
umzusetzen. Ziel der Risikoüberwachung ist es, die Effektivität der Maßnahmen zur
Risikominderung zu gewährleisten, weitere Informationen zur Verbesserung der
Risikobewertung zu erhalten und neu auftretende Risiken zu erkennen.

Was die Steuerung von Produktrisiken betrifft, so sind nach der Analyse eines Risikos mehrere
Reaktionsmöglichkeiten auf das Risiko möglich, z. B. Risikominderung durch Testen,
Risikoakzeptanz, Risikotransfer oder einen Notfallplan (Van Veenendaal 2012). Folgende
Maßnahmen können ergriffen werden, um die Produktrisiken durch Testen zu mindern:

• Auswahl von Testern mit dem richtigen Maß an Erfahrung und Fähigkeiten, die für
einen bestimmten Risikotyp geeignet sind

• Anwendung eines geeigneten Maßes an Unabhängigkeit beim Testen

• Durchführung von Reviews und statischen Analysen

• Anwendung geeigneter Testverfahren und Überdeckungsgrade

• Anwendung geeigneter Testarten für die betroffenen Qualitätsmerkmale

• Durchführung dynamischer Tests, einschließlich Regressionstests

5.3 Testüberwachung, Teststeuerung und Testabschluss

Bei der Testüberwachung geht es um das Sammeln von Informationen über das Testen. Diese
Informationen werden verwendet, um den Testfortschritt zu bewerten und zu messen, ob die
Endekriterien oder die mit den Endekriterien verbundenen Testaufgaben erfüllt sind, wie z. B.
die Erfüllung der Ziele für die Überdeckung von Produktrisiken, Anforderungen oder
Akzeptanzkriterien.

Die Teststeuerung nutzt die Informationen aus der Testüberwachung, um in Form von
Steuerungsmaßnahmen Anleitungen und notwendige Korrekturmaßnahmen zu geben, um
das Testen so effektiv und effizient wie möglich zu gestalten. Beispiele für
Steuerungsmaßnahmen sind:

Certified Tester
Foundation Level

Version 4.0.2 Seite 65 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Neupriorisierung von Tests, wenn ein identifiziertes Risiko zu einem Problem wird

• Neubewertung, ob ein Testelement die Eingangskriterien oder die Endekriterien nach
einer Überarbeitung erfüllt

• Anpassung des Testzeitplans, um eine Verzögerung bei der Bereitstellung der
Testumgebung auszugleichen

• Hinzufügen neuer Ressourcen, bei Bedarf

Beim Testabschluss werden Daten aus abgeschlossenen Testaktivitäten gesammelt, um
Erfahrungen, Testmittel und andere relevante Informationen zu konsolidieren.
Testabschlussaktivitäten finden an Projektmeilensteinen statt, z. B. wenn eine Teststufe
abgeschlossen ist, eine agile Iteration beendet ist, ein Testprojekt abgeschlossen (oder
abgebrochen) ist, ein Softwaresystem freigegeben oder ein Wartungsrelease abgeschlossen
ist.

5.3.1 Beim Testen verwendete Metriken

Testmetriken werden erfasst, um den Fortschritt gegenüber dem definierten Testzeitplan und
Budget, die aktuelle Qualität des Testobjekts und die Effektivität der Testaktivitäten in Bezug
auf die Testziele oder ein Iterationsziel aufzuzeigen. Die Testüberwachung erfasst eine
Vielzahl von Metriken zur Unterstützung der Teststeuerung und des Testabschlusses.

Zu den gängigen Testmetriken gehören:

• Metriken zum Projektfortschritt (z. B. abgeschlossene Aufgaben,
Ressourcenverbrauch, Testaufwand)

• Metriken zum Testfortschritt (z. B. Fortschritt bei der Testfallrealisierung, Fortschritt bei
der Vorbereitung der Testumgebung, Anzahl der ausgeführten/nicht ausgeführten
Testfälle, bestandene/nicht bestandene Testfälle, Zeit für die Testdurchführung)

• Metriken zur Produktqualität (z. B. Verfügbarkeit, Reaktionszeit, mittlere Betriebsdauer
bis zum Ausfall (Meantime to Failure, MTTF))

• Metriken für Fehlerzustände (z. B. Anzahl und Prioritäten der gefundenen/behobenen
Fehlerzustände, Fehlerdichte, Fehlerfindungsrate (Defect Detection Percentage,
DDP))

• Metriken zu Risiken (z. B. verbleibende Risikostufe)

• Metriken zur Überdeckung (z. B. Anforderungsüberdeckung, Codeüberdeckung)

• Metriken zu den Kosten (z. B. Kosten für das Testen, organisatorische Kosten für
Qualität)

5.3.2 Zweck, Inhalt und Zielgruppen für Testberichte

Der Zweck eines Testberichts ist es, Informationen über die Testaktivitäten
zusammenzufassen und zu kommunizieren, sowohl während als auch am Ende einer
Testaktivität. Testfortschrittsberichte unterstützen die laufende Teststeuerung und müssen

Certified Tester
Foundation Level

Version 4.0.2 Seite 66 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

genügend Informationen liefern, um Änderungen am Testzeitplan, an den Ressourcen oder
am Testkonzept vorzunehmen, wenn solche Änderungen aufgrund von Abweichungen vom
Plan oder veränderten Umständen erforderlich sind. Testabschlussberichte fassen eine
bestimmte Testaktivität zusammen (z. B. Teststufe, Testzyklus, Iteration) und können
Informationen für nachfolgende Tests liefern.

Während der Testüberwachung und Teststeuerung erstellt das Testteam
Testfortschrittsberichte für die Stakeholder, um sie auf dem Laufenden zu halten.
Testfortschrittsberichte werden im Allgemeinen in regelmäßigen Abständen (z. B. täglich,
wöchentlich) erstellt und enthalten typischerweise:

• Testzeitraum

• Testfortschritt (z. B. vor oder hinter dem Zeitplan), einschließlich aller festgestellten
Abweichungen

• Hindernisse für das Testen und deren Umgehungsmöglichkeiten

• Testmetriken (siehe Abschnitt 5.3.1 für Beispiele)

• Neue und veränderte Risiken innerhalb des Testzeitraumes

• Geplante Tests für den nächsten Zeitraum

Ein Testabschlussbericht wird während des Testabschlusses erstellt, wenn ein Projekt, eine
Teststufe oder eine Testart abgeschlossen ist und im Idealfall die Endekriterien erfüllt wurden.
Er basiert auf Testfortschrittsberichten und anderen Daten. Typische Testabschlussberichte
beinhalten:

• Zusammenfassung der durchgeführten Tests

• Bewertung der Tests und der Qualität des Produkts auf der Grundlage des
ursprünglichen Testkonzepts (d. h. Testziele und Endekriterien)

• Abweichungen vom Testkonzept (z. B. Abweichungen vom geplanten Testzeitplan, von
der Dauer und vom Aufwand).

• Hindernisse beim Testen und Umgehungen

• Testmetriken auf der Grundlage von Testfortschrittsberichten

• Restrisiken, nicht behobene Fehlerzustände

• Lessons Learned, die für das Testen relevant sind

Unterschiedliche Zielgruppen erfordern unterschiedliche Informationen in den Berichten und
beeinflussen den Grad der Formalität und die Häufigkeit der Testberichterstattung. Die
Testberichterstattung über den Testfortschritt an andere Mitglieder desselben Teams
geschieht häufig und informell, während die Berichterstattung über den Testabschluss einer
festgelegten Vorlage folgt und nur einmal durchgeführt wird.

Die Norm ISO/IEC/IEEE 29119-3 enthält Vorlagen und Beispiele für Testfortschrittsberichte
(genannt Teststatusberichte) und Testabschlussberichte.

Certified Tester
Foundation Level

Version 4.0.2 Seite 67 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

5.3.3 Kommunikation des Teststatus

Die beste Art der Kommunikation des Teststatus hängt von den Bedürfnissen des
Testmanagements, der organisationsweiten Teststrategie, den regulatorischen Vorgaben
oder, im Falle von selbstorganisierten Teams (siehe Abschnitt 1.5.2), vom Team selbst ab. Zu
den Optionen gehören:

• Mündliche Kommunikation mit Teammitgliedern und anderen Stakeholdern

• Dashboards (z. B. CI/CD-Dashboards, Taskboards und Burn-down-Charts)

• Elektronische Kommunikationskanäle (z. B. E-Mail, Chat)

• Online-Dokumentation

• Formale Testberichte (siehe Abschnitt 5.3.2)

Eine oder mehrere dieser Optionen können verwendet werden. Eine formellere
Kommunikation kann sich für verteilte Teams anbieten, in denen eine direkte Kommunikation
von Angesicht zu Angesicht aufgrund von geografischen Entfernungen oder Zeitunterschieden
nicht immer möglich ist. In der Regel sind verschiedene Stakeholder an unterschiedlichen
Arten von Informationen interessiert, so dass die Kommunikation entsprechend angepasst
werden sollte.

5.4 Konfigurationsmanagement

Beim Testen stellt das Konfigurationsmanagement (KM) eine Disziplin zur Identifizierung,
Steuerung und Verfolgung von Arbeitsergebnissen wie Testkonzepten, Teststrategien,
Testbedingungen, Testfällen, Testskripten, Testergebnissen, Testprotokollen und Test-
berichten als Konfigurationselemente dar.

Für ein komplexes Konfigurationselement (z. B. eine Testumgebung) zeichnet das KM die
Elemente, aus denen es besteht, ihre Beziehungen und Versionen auf. Wenn das
Konfigurationselement zum Testen freigegeben wird, wird es zur Baseline und kann nur durch
einen formalen Änderungskontrollprozess geändert werden.

Das Konfigurationsmanagement sichert die Daten eines Konfigurationselements, wenn eine
neue Baseline erstellt wird. Es ist möglich, zu einer früheren Baseline zurückzukehren, um
frühere Testergebnisse zu reproduzieren.

Um das Testen richtig zu unterstützen, stellt das KM Folgendes sicher:

• Alle Konfigurationselemente, einschließlich der Testelemente (einzelne Teile des
Testobjekts), werden eindeutig identifiziert, versionskontrolliert, auf Änderungen hin
verfolgt und mit anderen Konfigurationselementen in Beziehung gesetzt, damit die
Verfolgbarkeit während des gesamten Testprozesses aufrechterhalten werden kann.

• Alle identifizierten Elemente der Dokumentation und der Software werden als
Testmittel eindeutig referenziert.

Certified Tester
Foundation Level

Version 4.0.2 Seite 68 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kontinuierliche Integration, kontinuierliche Auslieferung, kontinuierliche Bereitstellung und die
damit verbundenen Tests werden in der Regel als Teil einer automatisierten DevOps-
Auslieferungskette implementiert (siehe Abschnitt 2.1.4), zu der normalerweise auch
automatisiertes KM gehört.

5.5 Fehlermanagement

Da eines der wichtigsten Testziele darin besteht, Fehlerzustände zu finden, ist ein etablierter
Prozess für das Fehlermanagement unerlässlich. Obwohl wir hier von "Fehlern" sprechen,
können sich die gemeldeten Anomalien als tatsächliche Fehlerzustände oder als etwas
anderes herausstellen (z. B. falsch positives Ergebnis, Änderungsanforderung) – dies wird
während der Bearbeitung der Fehlerberichte geklärt. Anomalien können in jeder Phase des
SDLC gemeldet werden und die Form hängt vom SDLC ab. Der Prozess des
Fehlermanagements umfasst mindestens einen Arbeitsablauf für die Behandlung einzelner
Fehlerzustände oder Anomalien von ihrer Entdeckung bis zu ihrer Schließung sowie Regeln
für ihre Klassifizierung. Der Workflow umfasst typischerweise Aktivitäten zur Protokollierung
der gemeldeten Anomalien, zu deren Analyse und Klassifizierung, zur Entscheidung über eine
geeignete Reaktion, z. B. Behebung oder Beibehaltung des Fehlerzustands, und letztendlich
zur Schließung des Fehlerberichts. Der Prozess muss von allen Beteiligten befolgt werden. Es
ist ratsam, Fehlerzustände aus statischen Tests (insbesondere der statischen Analyse) auf
ähnliche Weise zu behandeln.

Typische Fehlerberichte haben die folgenden Ziele:

• Bereitstellung ausreichender Informationen für diejenigen, die für die Bearbeitung und
Behebung gemeldeter Fehlerzustände verantwortlich sind, um das Problem zu lösen

• Verfolgung der Qualität des Arbeitsergebnisses

• Bereitstellung von Ideen zur Verbesserung des Entwicklungs- und Testprozesses

Ein Fehlerbericht, der während des dynamischen Testens aufgezeichnet wird, enthält in der
Regel folgende Angaben:

• Eindeutige Kennung

• Titel mit einer kurzen Zusammenfassung der Anomalie

• Datum, an dem die Anomalie beobachtet wurde, ausstellende Organisation und Autor,
einschließlich seiner Rolle

• Identifikation des Testobjekts und der Testumgebung

• Kontext des Fehlerzustands (z. B. laufender Testfall, durchgeführte Testaktivität,
SDLC-Phase und andere relevante Informationen wie verwendete Testverfahren,
Checklisten oder Testdaten)

• Beschreibung der Fehlerwirkung, um eine Reproduktion und Behebung zu
ermöglichen, einschließlich der Testschritte, die die Anomalie aufgedeckt haben, sowie
relevante Testprotokolle, Datenbankauszüge, Screenshots oder Aufzeichnungen

• Erwartete Ergebnisse und tatsächliche Ergebnisse

Certified Tester
Foundation Level

Version 4.0.2 Seite 69 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Fehlerschweregrad (Grad der Auswirkung) der Fehlerwirkung auf die Interessen der
Stakeholder oder Anforderungen

• Priorität für die Behebung

• Fehlerstatus (z. B. offen, zurückgestellt, doppelt, auf Behebung wartend, auf
Fehlernachtest wartend, wiedereröffnet, geschlossen, zurückgewiesen)

• Referenzen (z. B. auf den Testfall)

Einige dieser Daten können bei der Verwendung von Fehlermanagementwerkzeugen
automatisch eingefügt werden (z. B. Kennung, Datum, Autor und Anfangsstatus).
Dokumentvorlagen für einen Fehlerbericht und ein beispielhafter Fehlerbericht finden sich in
der Norm ISO/IEC/IEEE 29119-3, die Fehlerberichte als Abweichungsberichte bezeichnet.

Certified Tester
Foundation Level

Version 4.0.2 Seite 70 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

6. Testwerkzeuge – 20 Minuten
Schlüsselbegriffe

Testautomatisierung

Lernziele für Kapitel 6: Der Lernende kann ...

6.1 Werkzeugunterstützung für das Testen

FL-6.1.1 (K2) ... eine mögliche Unterstützung des Testens durch verschiedene Arten von
Testwerkzeugen erklären

6.2 Nutzen und Risiken von Testautomatisierung

FL-6.2.1 (K1) ... die Nutzen und Risiken von Testautomatisierung wiedergeben

Certified Tester
Foundation Level

Version 4.0.2 Seite 71 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

6.1 Werkzeugunterstützung für das Testen

Testwerkzeuge unterstützen und erleichtern viele Testaktivitäten. Beispiele hierfür sind unter
anderem:

• Testmanagementwerkzeuge – erhöhen die Effizienz des Testprozesses, indem sie das
Management des SDLC, der Anforderungen, der Tests, der Fehlerzustände und der
Konfiguration erleichtern.

• Werkzeuge für statische Tests – unterstützen den Tester bei der Durchführung von
Reviews und statischen Analysen.

• Werkzeuge für Testentwurf und Testrealisierung – erleichtern die Erstellung von
Testfällen, Testdaten und Testabläufen.

• Werkzeuge zur Testdurchführung und Testüberdeckung – erleichtern die
automatisierte Testdurchführung und die Messung der Überdeckung.

• Werkzeuge für nicht-funktionale Tests – ermöglichen dem Tester die Durchführung
nicht-funktionaler Tests, die manuell nur schwer oder gar nicht durchführbar sind.

• DevOps-Werkzeuge – unterstützen die DevOps-Auslieferungskette, die Verfolgung
von Arbeitsabläufen, den automatisierten Build-Prozess, CI/CD.

• Werkzeuge für die Zusammenarbeit – erleichtern die Kommunikation.

• Werkzeuge zur Unterstützung der Skalierbarkeit und Standardisierung der
Bereitstellung (z. B. virtuelle Maschinen, Container-Tools)

• Jedes andere Werkzeug, das beim Testen hilft (z. B. ist ein Tabellenkalkulations-
programm ein Testwerkzeug im Kontext des Testens)

6.2 Nutzen und Risiken von Testautomatisierung

Die bloße Anschaffung eines Werkzeugs ist keine Erfolgsgarantie. Jedes neue Werkzeug
erfordert einen gewissen Aufwand, um einen echten und dauerhaften Nutzen zu erzielen
(z. B. für die Einführung, Wartung und Schulung). Es gibt auch einige Risiken, die analysiert
und gemindert werden müssen.

Zu den potenziellen Nutzen von Testautomatisierung gehören:

• Zeitersparnis durch Verringerung sich wiederholender manueller Arbeiten (z. B.
Ausführung von Regressionstests, erneute Eingabe derselben Testdaten, Vergleich
der erwarteten Ergebnisse mit den tatsächlichen Ergebnissen und Prüfung der
Einhaltung von Programmierrichtlinien)

• Vermeidung einfacher menschlicher Fehlhandlungen durch größere Konsistenz und
Wiederholbarkeit (z. B. werden Tests konsequent aus Anforderungen abgeleitet,
Testdaten systematisch erstellt und Tests von einem Werkzeug in der gleichen
Reihenfolge und mit der gleichen Häufigkeit ausgeführt)

Certified Tester
Foundation Level

Version 4.0.2 Seite 72 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Objektivere Bewertung (z. B. Überdeckung) und Bereitstellung von Messungen, die für
Menschen zu kompliziert in ihrer Ermittlung sind

• Leichterer Zugang zu Informationen über das Testen zur Unterstützung des
Testmanagements und der Berichterstattung (z. B. Statistiken, Diagramme und
aggregierte Daten über den Testfortschritt, die Ausfallraten und die Dauer der
Testdurchführung)

• Verkürzte Testdurchführungszeiten für eine frühere Erkennung von Fehlerzuständen,
schnellere Rückmeldungen und kürzere Produkteinführungszeiten

• Mehr Zeit für Tester, um neue, intensivere und effektivere Tests zu entwerfen

Zu den potenziellen Risiken von Testautomatisierung gehören:

• Unrealistische Erwartungen hinsichtlich der Vorteile eines Werkzeugs (einschließlich
Funktionalität und leichte Handhabung)

• Ungenaue Schätzungen von Zeit, Kosten und Aufwand für die Einführung eines
Testwerkzeugs, die Pflege von Testskripten und die Änderung des bestehenden
manuellen Testprozesses

• Verwendung eines Testwerkzeugs, wenn manuelles Testen besser geeignet ist

• Zu starkes Vertrauen in ein Werkzeug, z. B. Vernachlässigung der Notwendigkeit des
menschlichen kritischen Denkens

• Die Abhängigkeit vom Werkzeuganbieter, der möglicherweise seine Geschäftstätigkeit
einstellt, das Werkzeug vom Markt nimmt, das Werkzeug an einen anderen Anbieter
verkauft oder schlechten Support bietet (z. B. bei Antworten auf Anfragen, bei Upgra-
des und der Behebung von Fehlerzuständen).

• Verwendung einer Open-Source-Software, die möglicherweise nicht mehr
weiterentwickelt wird, d. h., es sind keine weiteren Updates verfügbar, oder ihre
internen Komponenten müssen im Zuge der Weiterentwicklung recht häufig angepasst
werden.

• Das Automatisierungswerkzeug ist nicht mit der Entwicklungsplattform kompatibel.

• Wahl eines ungeeigneten Werkzeugs, das nicht den regulatorischen Anforderungen
und/oder den Sicherheitsstandards entspricht

Certified Tester
Foundation Level

Version 4.0.2 Seite 73 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

7. Literaturhinweise

7.1 Normen und Standards

ISO/IEC/IEEE 29119-1 (2022): Software- und Systemengineering – Software-Test – Teil 1:
Konzepte und Definitionen

ISO/IEC/IEEE 29119-2 (2021): Software- und Systemengineering – Software-Test – Teil 2:
Testprozesse

ISO/IEC/IEEE 29119-3 (2021): Software- und Systemengineering – Software-Test – Teil 3:
Testdokumentation

ISO/IEC/IEEE 29119-4 (2021): Software- und Systemengineering – Software-Test – Teil 4:
Testtechniken

ISO/IEC 25010 (2023-11): System- und Software-Engineering – Qualitätskriterien und
Bewertung von System und Softwareprodukten (SQuaRE) – Produktqualitätsmodell

ISO/IEC 20246 (2017): System und Software-Engineering – Bewertungen von
Arbeitsergebnissen

ISO/IEC/IEEE 14764:2022: Software-Engineering – Software-Lebenszyklus-Prozesse –
Instandhaltung

ISO 31000 (2018): Risikomanagement – Leitlinien

7.2 Fachliteratur

Adzic, G. (2009): Bridging the Communication Gap: Specification by Example and Agile
Acceptance Testing, Neuri Limited

Ammann, P. und Offutt, J. (2016): Introduction to Software Testing (2e), Cambridge University
Press

Andrews, M. und Whittaker, J. (2006): How to Break Web Software: Functional and Security
Testing of Web Applications and Web Services, Addison-Wesley Professional

Beck, K. (2003): Test Driven Development: By Example, Addison-Wesley

Beizer, B. (1990): Software Testing Techniques (2e), Van Nostrand Reinhold: Boston MA

Boehm, B. (1981): Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ

Buxton, J.N. und Randell B. (eds) (1970): Software Engineering Techniques. Report on a
conference sponsored by the NATO Science Committee, Rome, Italy, 27–31 October 1969,
p. 16

Certified Tester
Foundation Level

Version 4.0.2 Seite 74 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Chelimsky, D. et al. (2010): The Rspec Book: Behaviour Driven Development with Rspec,
Cucumber, and Friends, The Pragmatic Bookshelf: Raleigh, NC

Cohn, M. (2009): Succeeding with Agile: Software Development Using Scrum, Addison-
Wesley

Copeland, L. (2004): A Practitioner’s Guide to Software Test Design, Artech House: Norwood
MA

Craig, R. und Jaskiel, S. (2002): Systematic Software Testing, Artech House: Norwood MA

Crispin, L. und Gregory, J. (2008): Agile Testing: A Practical Guide for Testers and Agile
Teams, Pearson Education: Boston MA

Forgács, I. und Kovács, A. (2019): Practical Test Design: Selection of traditional and
automated test design techniques, BCS, The Chartered Institute for IT

Gawande A. (2009): The Checklist Manifesto: How to Get Things Right, New York, NY:
Metropolitan Books

Gärtner, M. (2011): ATDD by Example: A Practical Guide to Acceptance Test-Driven Devel-
opment, Pearson Education: Boston MA

Gilb, T., Graham, D. (1993): Software Inspection, Addison Wesley

Hendrickson, E. (2013): Explore It!: Reduce Risk and Increase Confidence with Exploratory
Testing, The Pragmatic Programmers

Hetzel, B. (1988): The Complete Guide to Software Testing, 2nd ed., John Wiley and Sons

Jeffries, R., Anderson, A., Hendrickson, C. (2000): Extreme Programming Installed, Addison-
Wesley Professional

Jorgensen, P. (2014): Software Testing, A Craftsman’s Approach (4e), CRC Press: Boca
Raton FL

Kan, S. (2003): Metrics and Models in Software Quality Engineering, 2nd ed., Addison-Wesley

Kaner, C., Falk, J. und Nguyen, H.Q. (1999): Testing Computer Software, 2nd ed., Wiley

Kaner, C., Bach, J. und Pettichord, B. (2011): Lessons Learned in Software Testing: A Context-
Driven Approach, 1st ed., Wiley

Kim, G., Humble, J., Debois, P. und Willis, J. (2016): The DevOps Handbook, Portland, OR

Koomen, T., van der Aalst, L., Broekman, B. und Vroon, M. (2006): TMap Next for result-driven
testing, UTN Publishers, The Netherlands

Myers, G. (2011): The Art of Software Testing, (3e), John Wiley & Sons: New York NY

O’Regan, G. (2019): Concise Guide to Software Testing, Springer Nature Switzerland

Certified Tester
Foundation Level

Version 4.0.2 Seite 75 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Pressman, R.S. (2019): Software Engineering. A Practitioner’s Approach, 9th ed., McGraw Hill

Roman, A. (2018): Thinking-Driven Testing. The Most Reasonable Approach to Quality
Control, Springer Nature Switzerland

Van Veenendaal, E. (ed.) (2012): Practical Risk-Based Testing, The PRISMA Approach, UTN
Publishers: The Netherlands

Watson, A.H., Wallace, D.R. und McCabe, T.J. (1996): Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric, U.S. Dept. of Commerce, Technology
Administration, NIST

Westfall, L. (2009): The Certified Software Quality Engineer Handbook, ASQ Quality Press

Whittaker, J. (2002): How to Break Software: A Practical Guide to Testing, Pearson

Whittaker, J. (2009): Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to
Guide Test Design, Addison Wesley

Whittaker, J. und Thompson, H. (2003): How to Break Software Security, Addison Wesley

Wiegers, K. (2001): Peer Reviews in Software: A Practical Guide, Addison-Wesley
Professional

7.3 Artikel und Internetquellen

Brykczynski, B. (1999): “A survey of software inspection checklists”, ACM SIGSOFT Software
Engineering Notes, 24(1), pp. 82-89

Enders, A. (1975): “An Analysis of Errors and Their Causes in System Programs”, IEEE
Transactions on Software Engineering 1(2), pp. 140-149

IREB CPRE Glossar in Deutsch/Englisch: https://www.ireb.org/de/cpre/glossary/

Manna, Z., Waldinger, R. (1978): “The logic of computer programming”, IEEE Transactions on
Software Engineering 4(3), pp. 199-229

Marick, B. (2003): Exploration through Example, http://www.exampler.com/old-
blog/2003/08/21.1.html#agile-testing-project-1

Nielsen, J. (1994): “Enhancing the explanatory power of usability heuristics”, Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems: Celebrating
Interdependence, ACM Press, pp. 152–158

Salman. I. (2016): “Cognitive biases in software quality and testing”, Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE '16), ACM, pp. 823-826

Wake, B. (2003): “INVEST in Good Stories, and SMART Tasks,” https://xp123.com/arti-
cles/invest-in-good-stories-and-smart-tasks/

Certified Tester
Foundation Level

Version 4.0.2 Seite 76 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

7.4 Deutschsprachige Bücher und Artikel (in diesem Lehrplan nicht direkt
referenziert)

Bath, G.; McKay, J.; Gronau, V. (Übersetzung) (2015): Praxiswissen Softwaretest – Test
Analyst und Technical Test Analyst Aus- und Weiterbildung zum Certified Tester – Advanced
Level nach ISTQB-Standard, 3., überarbeitete Auflage, dpunkt.verlag, Heidelberg

Baumgartner, M.; Gwihs, St.; Seidl, R.; Steirer, T.; Wendland, M (2021): Basiswissen
Testautomatisierung, 3., aktualisierte und überarbeitete Auflage, dpunkt.verlag, Heidelberg

Daigl, M.; Glunz, R. (2016): ISO 29119 – Die Softwaretest-Normen verstehen und anwenden,
dpunkt.verlag, Heidelberg

Hendrickson, E. (2014): Explore It! Wie Softwareentwickler und Tester mit explorativem Testen
Risiken reduzieren und Fehler aufdecken (Aus dem Amerikanischen übersetzt von Meike
Mertsch), dpunkt.verlag, Heidelberg

Liggesmeyer, P. (2009): Software-Qualität, Spektrum-Verlag, Heidelberg, Berlin

Linz, T. (2023): Testen in Scrum-Projekten – Leitfaden für Softwarequalität in der agilen Welt.
Aus- und Weiterbildung zum ISTQB® Certified Agile Tester – Foundation Extension, 3.,
aktualisierte und überarbeitete Auflage, dpunkt.verlag, Heidelberg

Ekssir-Monafred, M. (2022): Soft vs. Hard Skills in Software Testing, https://www.asqf.de/soft-
vs-hard-skills-in-software-testing/

Rössler, P.; Schlich, M.; Kneuper, R. (2013): Reviews in der System- und Software-
entwicklung: Grundlagen, Praxis, kontinuierliche Verbesserung, 1. Auflage, dpunkt.verlag,
Heidelberg

Sneed, H.M.; Baumgartner, M.; Seidl, R. (2011): Der Systemtest – Von den Anforderungen
zum Qualitätsnachweis, 3., aktualisierte und erweiterte Auflage, Carl Hanser Verlag, München

Spillner, A.; Breymann, U. (2016): Lean Testing für C++-Programmierer – angemessen statt
aufwendig testen, dpunkt.verlag, Heidelberg

Spillner, A.; Linz, T. (2024): Basiswissen Softwaretest: Aus- und Weiterbildung zum Certified
Tester – Foundation Level nach ISTQB®-Standard, 7., überarbeitete u. aktualisierte Auflage,
dpunkt.verlag, Heidelberg

Winter, M.; Ekssir-Monfared, M.; Sneed, H.M.; Seidl, R.; Borner, L. (2012): Der Integrationstest
– Von Entwurf und Architektur zur Komponenten- und Systemintegration, Carl Hanser Verlag,
München

Winter, M.; Roßner, Th.; Brandes, Ch.; Götz, H. (2016): Basiswissen modellbasierter Test,
Aus- und Weiterbildung zum ISTQB® Foundation Level – Certified Model-Based Tester, 2.,
vollständig überarbeitete und aktualisierte Auflage, dpunkt.verlag, Heidelberg

Certified Tester
Foundation Level

Version 4.0.2 Seite 77 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

8. Anhang A – Lernziele/kognitive Stufen des Wissens
Die folgenden Lernziele werden in diesem Lehrplan verwendet. Jedes Thema des Lehrplans
wird anhand des jeweiligen Lernziels behandelt. Die Lernziele dieses Lehrplans enden mit
einem Aktionsverb, das dem jeweiligen kognitiven Wissensstand entspricht (siehe unten).

Wissensstufe 1: Sich erinnern (K1) – der Lernende kann einen Begriff oder ein Konzept
erkennen, sich erinnern oder abrufen.

Aktionsverben: identifizieren, wiedergeben, erinnern, erkennen.

Beispiele: Der Lernende kann ...

• " ... typische Testziele identifizieren"

• "... die Konzepte der Testpyramide wiedergeben"

• "... den möglichen Mehrwert, den ein Tester für die Iterations- und Releaseplanung
schafft, erkennen"

Wissensstufe 2: Verstehen (K2) – Der Lernende kann die Gründe für oder Erklärungen zu
Aussagen zu einem Thema auswählen. Typische beobachtbare Leistungen zusammenfassen,
vergleichen, einordnen und Beispiele für Konzepte des Testens nennen.

Aktionsverben: einordnen, vergleichen, etwas gegenüberstellen, differenzieren,
unterscheiden, veranschaulichen, erklären, Beispiele geben, interpretieren, zusammenfassen.

Beispiele: Der Lernende kann ...

• "... die verschiedenen Möglichkeiten zum Schreiben von Akzeptanzkriterien
einordnen"

• "... die verschiedenen Rollen beim Testen vergleichen" (nach Gemeinsamkeiten,
Unterschieden oder beidem suchen)

• "... zwischen Projektrisiken und Produktrisiken unterscheiden" (ermöglicht die
Unterscheidung der Konzepte)

• "... die Auswirkungen des Kontexts auf den Testprozess erklären"

• "... Beispiele zu Zweck und Inhalt eines Testkonzepts geben"

• "... die Aktivitäten des Reviewprozesses zusammenfassen"

Wissensstufe 3: Anwenden (K3) – der Lernende kann ein Verfahren anwenden, wenn er mit
einer vertrauten Aufgabe konfrontiert wird, oder das richtige Verfahren auswählen und es auf
einen bestimmten Kontext anwenden.

Aktionsverben: anwenden, umsetzen, erstellen, nutzen.

Certified Tester
Foundation Level

Version 4.0.2 Seite 78 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Beispiele: Der Lernende kann ...

• "... die Priorisierung von Testfällen anwenden" (sollte sich auf ein Verfahren, eine
Technik, einen Prozess, einen Algorithmus usw. beziehen)

• "... einen Fehlerbericht erstellen"

• "... die Grenzwertanalyse zur Ableitung von Testfällen anwenden"

Referenzen für die Taxonomiestufen der Lernziele:

Anderson, L. W. und Krathwohl, D. R. (Hrsg.) (2001): A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 79 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

9. Anhang B – Verfolgbarkeitsmatrix des geschäftlichen Nutzens (Business Outcomes)
mit Lernzielen

Dieser Abschnitt listet die Anzahl der Lernziele des Foundation Levels auf, die mit dem geschäftlichen Nutzen in Verbindung stehen, sowie
die Verfolgbarkeit zwischen dem geschäftlichen Nutzen und den Lernzielen des Foundation Levels.

Geschäftlicher Nutzen: Foundation Level

FL -BO
1

FL -BO
2

FL -BO
3

FL -BO
4

FL -BO
5

FL -BO
6

FL -BO
7

FL -BO
8

FL -BO
9

FL- BO
10

FL- BO
11

FL- BO
12

FL- BO
13

FL- BO
14

BO1 Verstehen, was Testen ist und warum es nützlich ist 6

BO2 Die grundlegenden Konzepte des Testens von Software verstehen 22

BO3 Den Testansatz und die anzuwendenden Aktivitäten in Abhängigkeit vom
Kontext des Testens identifizieren 6

BO4 Die Qualität der Dokumentation bewerten und verbessern 9

BO5 Die Effektivität und Effizienz des Testens steigern 20

BO6 Den Testprozess an den Softwareentwicklungslebenszyklus anpassen 6

BO7 Grundsätze des Testmanagements verstehen 6

BO8 Klare und verständliche Fehlerberichte schreiben und kommunizieren 1

BO9 Die Faktoren, die die Prioritäten und den Aufwand für das Testen
beeinflussen, verstehen 7

BO10 Als Teil eines funktionsübergreifenden Teams arbeiten 8

BO11 Risiken und Vorteile der Testautomatisierung kennen 1

BO12 Wesentliche Fähigkeiten, die für das Testen erforderlich sind, erkennen 5

BO13 Die Auswirkungen von Risiken auf das Testen verstehen 4

BO14 Über den Testfortschritt und die Qualität effektiv berichten 4

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 80 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kapitel/

Unter-
kapitel

Lernziel – Der Lernende kann … K-
level

Geschäftlicher Nutzen

FL-BO
1

FL-BO
2

FL - BO
3

FL - BO
4

FL- BO
5

FL -BO
6

FL -BO
7

FL-BO
8

FL -BO
9

FL- BO
10

FL-BO
11

FL- BO
12

FL-BO
13

FL- BO
14

Kapitel 1 Grundlagen des Testens
1.1 Was ist Testen?

1.1.1 … typische Testziele identifizieren K1 X
1.1.2 .. Testen von Debugging unterscheiden K2

X

1.2 Warum ist Testen notwendig?

1.2.1 ... Beispiele geben, warum Testen notwendig ist K2 X
1.2.2 ... die Beziehung zwischen Testen und Qualitätssicherung wiedergeben K1

X

1.2.3 ... zwischen Grundursache, Fehlhandlung, Fehlerzustand und Fehlerwirkung
unterscheiden

K2

X

1.3 Grundsätze des Testens

1.3.1 ... die sieben Grundsätze des Testens erklären K2

X

1.4 Testaktivitäten, Testmittel und Rollen des Testens

1.4.1 ... die verschiedenen Testaktivitäten und die damit verbundenen Aufgaben erklären K2

 X

1.4.2 ... die Auswirkungen des Kontexts auf den Testprozess erklären K2

 X X
1.4.3 ... Testmittel, die die Testaktivitäten unterstützen, unterscheiden K2

 X

1.4.4 ... die Bedeutung der Pflege der Verfolgbarkeit erklären K2

 X X
1.4.5 ... die verschiedenen Rollen beim Testen vergleichen K2

 X

1.5 Wesentliche Kompetenzen und bewährte Praktiken beim Testen

1.5.1 ... Beispiele, die für die allgemeinen Kompetenzen, die für das Testen erforderlich

sind, geben
K2

 X

1.5.2 ... die Vorteile des Whole-Team-Ansatzes wiedergeben K1

 X
1.5.3 ... die Vor- und Nachteile des unabhängigen Testens unterscheiden K2

 X

Kapitel 2 Testen während des Softwareentwicklungslebenszyklus

2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 81 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kapitel/

Unter-
kapitel

Lernziel – Der Lernende kann … K-
level

Geschäftlicher Nutzen

FL-BO
1

FL-BO
2

FL - BO
3

FL - BO
4

FL- BO
5

FL -BO
6

FL -BO
7

FL-BO
8

FL -BO
9

FL- BO
10

FL-BO
11

FL- BO
12

FL-BO
13

FL- BO
14

2.1.1 ... die Auswirkungen des gewählten Softwareentwicklungslebenszyklus auf das Testen
erklären

K2

 X

2.1.2 ... gute Praktiken für das Testen, die für alle Softwareentwicklungslebenszyklen gelten,
wiedergeben

K1

 X

2.1.3 ... die Beispiele für Test-First-Ansätze in der Entwicklung wiedergeben K1

 X
2.1.4 ... die möglichen Auswirkungen von DevOps auf das Testen zusammenfassen K2

 X X X X

2.1.5 ... Shift-Left erklären K2

 X X
2.1.6 ... den Einsatz von Retrospektiven als Mechanismus zur Prozessverbesserung erklären K2

 X X

2.2 Teststufen und Testarten

2.2.1 ... die verschiedenen Teststufen unterscheiden K2

X X

2.2.2 ... die verschiedenen Testarten unterscheiden K2

X
2.2.3 ... Fehlernachtests von Regressionstests unterscheiden K2

X

2.3 Wartungstest

2.3.1 ... den Wartungstest und dessen Auslöser zusammenfassen K2

X X

Kapitel 3 Statischer Test

3.1 Grundlagen des statischen Tests

3.1.1 ... Arten von Arbeitsergebnissen, die durch statischen Test geprüft werden können,
erkennen

K1

 X X

3.1.2 ... den Wert statischer Tests erklären K2 X X X
3.1.3 ... statischen Test und dynamischen Test vergleichen und gegenüberstellen K2

 X X

3.2 Feedback- und Reviewprozess

3.2.1 ... Vorteile eines frühzeitigen und häufigen Stakeholder-Feedbacks erkennen K1 X X X
3.2.2 ... die Aktivitäten des Reviewprozesses zusammenfassen K2

 X X

3.2.3 ... die bei der Durchführung von Reviews den Hauptrollen zugewiesenen
Verantwortlichkeiten wiedergeben

K1

 X X

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 82 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kapitel/

Unter-
kapitel

Lernziel – Der Lernende kann … K-
level

Geschäftlicher Nutzen

FL-BO
1

FL-BO
2

FL - BO
3

FL - BO
4

FL- BO
5

FL -BO
6

FL -BO
7

FL-BO
8

FL -BO
9

FL- BO
10

FL-BO
11

FL- BO
12

FL-BO
13

FL- BO
14

3.2.4 ... verschiedene Arten von Reviews vergleichen und gegenüberstellen K2

X
3.2.5 ... die Faktoren, die zu einem erfolgreichen Review beitragen, wiedergeben K1

 X X

Kapitel 4 Testanalyse und -entwurf

4.1 Testverfahren im Überblick

4.1.1 ... Black-Box-Testverfahren, White-Box-Testverfahren und erfahrungsbasierte
Testverfahren unterscheiden

K2

X

4.2 Black-Box-Testverfahren

4.2.1 ... die Äquivalenzklassenbildung zur Ableitung von Testfällen anwenden K3

 X

4.2.2 ... die Grenzwertanalyse zur Ableitung von Testfällen anwenden K3

 X
4.2.3 ... den Entscheidungstabellentest für die Ableitung von Testfällen anwenden K3

 X

4.2.4 ... den Zustandsübergangstest zur Ableitung von Testfällen anwenden K3

 X
4.3 White-Box-Testverfahren

4.3.1 … den Anweisungstest erklären K2

X
4.3.2 … den Zweigtest erklären K2

X

4.3.3 ... den Wert des White-Box-Tests erklären K2 X X
4.4 Erfahrungsbasierte Testverfahren

4.4.1 … die intuitive Testfallermittlung erklären K2

X
4.4.2 … den explorativen Test erklären K2

X

4.4.3 … den checklistenbasierten Test erklären K2

X
4.5 Auf Zusammenarbeit basierende Testansätze

4.5.1 ... das Schreiben von User-Storys in Zusammenarbeit mit Entwicklern und
Fachvertretern erklären

K2

 X X

4.5.2 ... die verschiedenen Möglichkeiten zum Schreiben von Akzeptanzkriterien einordnen K2

 X
4.5.3 ... die abnahmetestgetriebene Entwicklung (ATDD) zur Ableitung von Testfällen

anwenden
K3

 X

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 83 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kapitel/

Unter-
kapitel

Lernziel – Der Lernende kann … K-
level

Geschäftlicher Nutzen

FL-BO
1

FL-BO
2

FL - BO
3

FL - BO
4

FL- BO
5

FL -BO
6

FL -BO
7

FL-BO
8

FL -BO
9

FL- BO
10

FL-BO
11

FL- BO
12

FL-BO
13

FL- BO
14

Kapitel 5 Management der Testaktivitäten

5.1 Testplanung

5.1.1 ... Beispiele zu Zweck und Inhalt eines Testkonzepts geben K2

X X
5.1.2 ... den möglichen Mehrwert, den ein Tester für die Iterations- und Releaseplanung

schafft, erkennen
K1 X X X

5.1.3 ... Eingangskriterien und Endekriterien vergleichen und gegenüberstellen K2

 X X X
5.1.4 ... Schätzverfahren zur Berechnung des erforderlichen Testaufwands anwenden K3

 X X

5.1.5 ... die Priorisierung von Testfällen anwenden K3

 X X
5.1.6 ... die Konzepte der Testpyramide wiedergeben K1

X

5.1.7 ... die Testquadranten und ihre Beziehungen zu Teststufen und Testarten
zusammenfassen

K2

X X

5.2 Risikomanagement

5.2.1 ... die Risikostufe anhand der Eintrittswahrscheinlichkeit des Risikos und des

Schadensausmaßes des Risikos identifizieren
K1

 X X

5.2.2 ... zwischen Projektrisiken und Produktrisiken unterscheiden K2

X X
5.2.3 ... den möglichen Einfluss der Produktrisikoanalyse auf Gründlichkeit und Umfang des

Testens erklären
K2

 X X X

5.2.4 ... mögliche Maßnahmen, die als Reaktion auf analysierte Produktrisiken ergriffen
werden können, erklären

K2

X X X

5.3 Testüberwachung, Teststeuerung und Testabschluss

5.3.1 ... die beim Testen verwendeten Metriken wiedergeben K1

 X X

5.3.2 ... Zweck, Inhalt und Zielgruppen von Testberichten zusammenfassen K2

 X X X
5.3.3 ... Beispiele geben, wie man den Teststatus kommunizieren kann K2

 X X

5.4 Konfigurationsmanagement

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 84 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Kapitel/

Unter-
kapitel

Lernziel – Der Lernende kann … K-
level

Geschäftlicher Nutzen

FL-BO
1

FL-BO
2

FL - BO
3

FL - BO
4

FL- BO
5

FL -BO
6

FL -BO
7

FL-BO
8

FL -BO
9

FL- BO
10

FL-BO
11

FL- BO
12

FL-BO
13

FL- BO
14

5.4.1 ... eine mögliche Unterstützung des Testens durch das Konfigurationsmanagement
zusammenfassen

K2

 X X

5.5 Fehlermanagement

5.5.1 … einen Fehlerbericht erstellen K3

X X

Kapitel 6 Testwerkzeuge

6.1 Werkzeugunterstützung für das Testen

6.1.1 ... eine mögliche Unterstützung des Testens durch verschiedene Arten von
Testwerkzeugen erklären

K2

 X

6.2 Nutzen und Risiken von Testautomatisierung

6.2.1 ... die Nutzen und Risiken von Testautomatisierung wiedergeben K1

 X X

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 85 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

10. Anhang C – Release Notes
Der ISTQB®-Lehrplan Foundation Level V4.0.2 (englische Originalversion v4.0.1) ist eine
korrigierte Version des Foundation-Level-Lehrplans V4.0. Diese Version enthält die folgenden
Änderungen:

Änderung des Wortlauts der Lernziele, um sie mit den Begriffen des Glossars in Einklang zu
bringen.

< Der Lernende kann ...>

• FL-1.4.1: ... die verschiedenen Testaktivitäten und -aufgaben zusammenfassen -> ...
die verschiedenen Testaktivitäten und die damit verbundenen Aufgaben erklären

• FL-2.1.5: ... den Shift-Left-Ansatz erklären -> ... Shift-Left erklären
• FL-3.1.1: ... Produktarten, die mit den verschiedenen statischen Testverfahren

geprüft werden können, erkennen -> ... Arten von Arbeitsergebnissen, die durch
statischen Test geprüft werden können, erkennen

• FL-3.1.3 ... statischen und dynamischen Test vergleichen und gegenüberstellen -> ...
statischen Test und dynamischen Test vergleichen und gegenüberstellen

• FL-5.2.3: ... den möglichen Einfluss der Produktrisikoanalyse auf Intensität und
Umfang des Testens erklären -> ... den möglichen Einfluss der Produktrisikoanalyse
auf Gründlichkeit und Umfang des Testens erklären

Textänderungen zur Übereinstimmung mit den Begriffen des Glossars (Artefakte,
Dokumentation -> Arbeitsergebnisse, Ziele, Testziele des Projekts -> Testziele,
Testüberwachung und -steuerung -> Testüberwachung und Teststeuerung,
Testdokumentation -> Testmittel, iterativen und inkrementellen Entwicklungsmodellen ->
iterativen Entwicklungsmodellen und inkrementellen Entwicklungsmodellen, Software
Qualitätsmerkmale -> Qualitätsmerkmale, Testfortschritts- und Testabschlussberichte ->
Testfortschrittsberichte und Testabschlussberichte, Entwicklungsstadium ->
Entwicklungsphase, Komponenten- und Komponentenintegrationstests -> Komponententests
und Komponentenintegrationstests, der vertragliche und regulatorische Abnahmetest -> der
vertragliche Abnahmetest, der regulatorische Abnahmetest, Eingangs-/ Endekriterien ->
Eingangskriterien oder Endekriterien, organisationsweite Testrichtlinie -> Testrichtlinie, Shift-
Left-Ansatz -> Shift-Left, Phase des Testens -> Testaktivität, Berichterstattung ->
Testberichterstattung, Berichterstattung über das Testen für ein abgeschlossenes Projekt ->
Berichterstattung über den Testabschluss, Schritte -> Testschritte, Umfang des Testens ->
Testumfang, Werkzeuge für Testentwurf und -realisierung -> Werkzeuge für Testentwurf und
Testrealisierung, statischer als auch dynamischer Test -> statischer Test als auch
dynamischer Test, erfahrungsbasierte Testverfahren (Schlüsselbegriff) -> erfahrungsbasiertes
Testverfahren

Aktualisierung der ISO 25010. Eine neue Version der Norm ISO 25010 wurde 2023
veröffentlicht. Darin wird „Gebrauchstauglichkeit“ in „Interaktionsfähigkeit“ und
„Übertragbarkeit“ in „Flexibilität“ umbenannt, und es wird ein neues Merkmal „Sicherheit

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 86 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

(Safety)“ hinzugefügt. Wir behalten die ursprünglichen Bezeichnungen der Merkmale bei,
fügen aber in Abschnitt 2.2.2 die neuen Bezeichnungen für Gebrauchstauglichkeit und
Übertragbarkeit hinzu. Auf Grund einer deutschen Glossaränderung heißt IT-Sicherheit nun
Sicherheit (Security).

Drei Schlüsselbegriffe wurden hinzugefügt (Testprozess und Verfolgbarkeit in Kapitel 1,
Teststrategie in Kapitel 5)

Korrekturen im Text

• In Abschnitt 1.1.2 wurden “Ursache” und “Grundursache” ersetzt durch “Fehlerzustand”.

• In Abschnitt 1.2.2 wurde “Qualitätssteuerung” ersetzt durch “Test”, da in diesem Abschnitt
Qualitätssicherung mit Testen verglichen wird.

• In Abschnitt 1.4.1 wurden die Beschreibungen der Aktivitäten klarer und eindeutiger
formuliert.

• In Abschnitt 1.4.3 wurde “automatisierte Testskripte” geändert in “manuelle und
automatisierte Testskripte”.

• In Abschnitt 1.4.4 wurde “festgestellten” in “festgestellten Fehlerzuständen” entfernt.

• In Abschnitt 2.1.3 wurde im Zusammenhang mit BDD “Die Testfälle werden dann
automatisch in ausführbare Tests übersetzt” ersetzt durch “Die Testfälle sollten dann
automatisch in ausführbare Tests übersetzt werden”.

• In Abschnitt 2.1.4 wurde “Das Risiko einer zu aufwendigen Regression” geändert in “Das
Risiko einer Regression”.

• In Abschnitt 2.1.5 wurde “aus der Sicht des Testens” verändert in “aus der Sicht der Tester”
und “Testen zu einem früheren Zeitpunkt im SDLC durchgeführt wird” verändert in “Testen
zu einem früheren Zeitpunkt im SDLC erfolgt”.

• In Abschnitt 2.1.6 wurde “(auch bekannt als Projekt-Abschluss-Sitzungen oder
Bewertungssitzungen und Projekt-Retrospektiven)” entfernt.

• In Abschnitt 2.2.2 wurde die Beschreibung der Testbasis von “Dokumentation außerhalb
des Testobjekts” in “Dokumentation..., die sich nicht auf die interne Struktur des
Testobjekts bezieht” geändert, um den Unterschied zwischen Black-Box-Tests und White-
Box-Tests besser zu verdeutlichen. Außerdem haben wir den Systemtest als Beispiel für
einen frühen Start im SDLC entfernt.

• In Abschnitt 3.1 wurde Fachbereichsvertreter genauer spezifiziert.

• In Abschnitt 3.1.2 “bestimmte” wurde in “Bestimmte Fehlerzustände im Code können durch
statische Analyse effizienter aufgedeckt werden” hinzugefügt.

• In Abschnitt 3.2.3 wurde “korrigiert das Arbeitsergebnis des Reviews” verändert in
“korrigiert das zu prüfende Arbeitsergebnis”.

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 87 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• In Abschnitt 4.1 wurde “und ihren entsprechenden Messgrößen” aus “Weitere
Informationen zu Testverfahren und ihren entsprechenden Messgrößen” entfernt.

• In Abschnitt 4.2.1 wurde “Testobjekt” durch “Testelement” ersetzt, weil dies der korrekte
Begriff im Zusammenhang mit der Anwendung von Testverfahren ist.

• In Abschnitt 4.2.1 hinzugefügt, dass ungültige Äquivalenzklassen isoliert getestet werden
sollten, um eine Fehlermaskierung zu vermeiden.

• In Abschnitt 4.2.4 wird “Zustandsübergangsdiagramm” durch “Zustandsdiagramm” ersetzt,
da dies die übliche Bezeichnung dieses Modells in der Informatik ist und auch, um mit dem
Lehrplan für modellbasiertes Testen konsistent zu sein.

• In Abschnitt 4.2.4 “besuchte Zustände” durch “ausgeführte Zustände” ersetzt, da
„ausführen“ der richtige Begriff im Zusammenhang mit der Überdeckung der
Modellelemente durch Testfälle ist.

• In Abschnitt 4.3 wurde die Überschrift von “White-Box-Test” in “White-Box-Testverfahren”
geändert.

• In Abschnitt 5.1.1 wurde der Begriff “Einschränkungen” aus dem ersten Aufzählungspunkt
gestrichen; die Einschränkungen stehen im Mittelpunkt des zweiten Aufzählungspunkts.

• In Abschnitt 5.1.3 wird “Testabschlusskriterien” im Zusammenhang mit binären „ja/nein“-
Kriterien verwendet, nicht als Synonym für “Endekriterien”, daher wurde der
entsprechende Begriff geändert.

• In Abschnitt 5.1.6 wurde die Beziehung zwischen den Ebenen der Testpyramide und den
Testisolationsstufen korrigiert (je höher die Ebene, desto niedriger die Testisolation).
Außerdem haben wir “eine angemessene Überdeckung” durch “einen angemessenen
Überdeckungsgrad” ersetzt.

• In Abschnitt 5.5 wurde “Anomalien” mit “Fehlerzustände oder Anomalien” ausgetauscht.

• In Abschnitt 6.2 wurde “Fehlerquote” ersetzt durch “Ausfallraten”.

• In Abschnitt 0.6 wurde Referenz auf weiterführende Dokumente korrigiert.

Außerdem wurden einige Rechtschreibefehler behoben und einige Begriffe wurden über den
gesamten Lehrplan hinweg vereinheitlicht.

In der deutschsprachigen Fassung gab es darüber hinaus folgende Änderungen:

• Die Schreibweise User-Story wurde den Regeln der deutschen Rechtschreibung
angepasst.

• Kontrollflussdiagramm (4.3.2, 4.3.3) wurde durch Kontrollflussgraph ersetzt.
• Intensität wurde durch Gründlichkeit ersetzt (Lernziel FL-5.2.3).
• Herleitung wurde durch Ermittlung ersetzt (6.2).

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 88 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

• Korrekturen gemäß Glossar, z. B. Abnahmekriterien (Schlüsselbegriff) ->
Akzeptanzkriterien, Zeigüberdeckungstests (Schlüsselbegriff) -> Zweigüberdeckung

• Kleinere Übersetzungsfehler wurden behoben.

RELEASE NOTES FÜR VERSION 4.0
Der ISTQB®-Lehrplan Foundation Level V4.0 ist eine umfassende Aktualisierung, die auf dem
Foundation-Level-Lehrplan (V3.1.1) und dem Lehrplan Agile Tester 2014 basiert. Aus diesem
Grund gibt es keine detaillierten Versionshinweise pro Kapitel und Abschnitt. Im Folgenden
finden Sie jedoch eine Zusammenfassung der wichtigsten Änderungen. Darüber hinaus bietet
das ISTQB® in einem separaten Dokument mit Versionshinweisen die Verfolgbarkeit zwischen
den Lernzielen in der Version 3.1.1 des Foundation-Level-Lehrplans, der Version 2014 des
Lehrplans Agile Tester und den Lernzielen im neuen Foundation-Level-Lehrplan V4.0 an und
zeigt auf, welche Lernziele hinzugefügt, aktualisiert oder entfernt wurden.

Zum Zeitpunkt der Erstellung des Lehrplans (2022-2023) haben mehr als eine Million
Menschen in mehr als 100 Ländern die ISTQB®-Prüfung Foundation Level abgelegt, und mehr
als 800.000 sind weltweit zertifizierte Tester. Da man davon ausgehen kann, dass alle von
ihnen den Foundation-Lehrplan gelesen haben, um die Prüfung bestehen zu können, ist der
Foundation-Lehrplan wahrscheinlich das meistgelesene Dokument zum Thema Softwaretest
überhaupt! Mit dieser umfassenden Aktualisierung wird diesem Erbe Rechnung getragen.
Außerdem soll die Meinung Hunderttausender weiterer Personen über die Qualität, die das
ISTQB® der weltweiten Gemeinschaft der Tester bietet, verbessert werden.

In dieser Version wurden alle Lernziele überarbeitet, um sie atomar zu machen und um eine
Eins-zu-eins-Verfolgbarkeit zwischen Lernziel und Lehrplanabschnitten zu schaffen, so dass
es keine Inhalte ohne Lernziel gibt. Ziel war es, diese Version leichter lesbar, verständlich,
erlernbar und übersetzbar zu machen, wobei der Schwerpunkt auf dem praktischen Nutzen
und der Ausgewogenheit zwischen Wissen und Fähigkeiten liegt.

In dieser Hauptversion wurden die folgenden Änderungen vorgenommen:

• Kürzung des gesamten Lehrplans. Der Lehrplan ist kein Lehrbuch, sondern ein
Dokument, das dazu dient, die grundlegenden Elemente eines Einführungskurses in
das Testen von Software zu umreißen, einschließlich seiner Themen und auf welchem
Niveau sie behandelt werden sollten. Daher gilt insbesondere:

- In den meisten Fällen wurden Beispiele aus dem Text entfernt. Es ist die
Aufgabe eines Schulungsanbieters, die Beispiele sowie die Übungen während
der Schulung bereitzustellen.

- Die "Checkliste zum Verfassen von Lehrplänen" wurde befolgt, die die
maximale Textlänge für die Lernziele auf jeder Stufe vorgibt: (K1 = max. 10
Zeilen, K2 = max. 15 Zeilen, K3 = max. 25 Zeilen).

• Reduktion der Anzahl der Lernziele im Vergleich zu den Lehrplänen Foundation Level
(FL) V3.1.1 und Agile Tester (AT) V2014 zusammen

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 89 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

- 14 K1-Lernziele im Vergleich zu 21 K1-Lernzielen in FL V3.1.1 (15) und AT
2014 (6)

- 42 K2-Lernziele im Vergleich zu 53 K2-Lernzielen in FL V3.1.1 (40) und AT
2014 (13)

- 8 K3-Lernziele im Vergleich zu 15 K3-Lernzielen in FL V3.1.1 (7) und AT 2014
(8)

• Ausführlichere Verweise auf klassische und/oder anerkannte Bücher und Artikel über
das Testen von Software und verwandte Themen werden bereitgestellt.

• Wesentliche Änderungen in Kapitel 1 (Grundlagen des Testens):
- Abschnitt über Fähigkeiten beim Testen wurde erweitert und verbessert.
- Abschnitt über den Whole-Team-Ansatz (K1) wurde hinzugefügt.
- Abschnitt über das unabhängige Testen wurde von Kapitel 5 in Kapitel 1

verschoben.

• Wesentliche Änderungen in Kapitel 2 (Testen während des
Softwareentwicklungslebenszyklus):

- Die Abschnitte 2.1.1 und 2.1.2 wurden umgeschrieben und verbessert, die
entsprechenden Lernziele wurden geändert.

- Mehr Fokus liegt nun auf Praktiken wie: Test-First-Ansatz (K1), Shift-Left (K2),
Retrospektiven (K2).

- Neuer Abschnitt zum Testen im Kontext von DevOps (K2) wurde hinzugefügt.
- Aufteilung der Teststufe Integrationstest in zwei separate Teststufen:

Komponentenintegrationstests und Systemintegrationstests.

• Wesentliche Änderungen in Kapitel 3 (Statischer Test):
- Abschnitt über Reviewverfahren wurde zusammen mit dem K3-Lernziel (Ein

Reviewverfahren auf ein Arbeitsergebnis anwenden können, um
Fehlerzustände zu finden) entfernt.

• Wesentliche Änderungen in Kapitel 4 (Testanalyse und -entwurf):
- Anwendungsfallbasiertes Testen wurde entfernt (ist aber im Lehrplan Certified

Tester Advanced Level Test Analyst noch enthalten).
- Stärkerer Fokus wurde auf den auf Zusammenarbeit basierenden Testansatz

gelegt: neues K3-Lernziel über die Verwendung von ATDD zur Ableitung von
Testfällen und zwei neue K2-Lernziele über User-Storys und
Akzeptanzkriterien.

- Entscheidungstests und -überdeckung werden durch Zweigtests und -überde-
ckung ersetzt (erstens wird die Zweigüberdeckung in der Praxis häufiger
verwendet; zweitens definieren verschiedene Standards die Entscheidung
anders als den "Zweig"; drittens wird damit ein subtiler, aber schwerwiegender
Fehler des alten FL2018 behoben, der behauptet, dass "100 %

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 90 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Entscheidungsüberdeckung 100 % Anweisungsüberdeckung impliziert" –
dieser Satz ist im Falle von Programmen ohne Entscheidungen falsch).

- Abschnitt über den Wert des White-Box-Tests wurde verbessert.

• Wesentliche Änderungen in Kapitel 5 (Management der Testaktivitäten):
- Abschnitt über Teststrategien/-vorgehensweisen wurde entfernt.
- Neues K3-Lernziel über Schätzverfahren zum Abschätzen des Testaufwands

wurde hinzugefügt.
- Stärkerer Fokus wurde auf die allseits gebräuchlichen Konzepte und

Werkzeuge im Testmanagement von agilen Projekten gelegt: Iterations- und
Releaseplanung (K1), Testpyramide (K1) und Testquadranten (K2).

- Der Abschnitt über Risikomanagement wurde besser strukturiert, indem vier
Hauptaktivitäten beschrieben werden: Risikoidentifizierung, Risikobewertung,
Risikominderung und Risikoüberwachung.

• Wesentliche Änderungen in Kapitel 6 (Testwerkzeuge):
- Der Inhalt zu einigen Sachverhalten der Testautomatisierung wurde reduziert,

da er für den Foundation Level zu anspruchsvoll ist – der Abschnitt über die
Auswahl von Werkzeugen, die Durchführung von Pilotprojekten und die
Einführung von Werkzeugen im Unternehmen wurde entfernt.

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 91 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

11. Index

0
0-Switch-Überdeckung 49

2
2-Wert-Grenzwertanalyse 47

3
3 C 53
3-Wert-Grenzwertanalyse 47

A
Abhängigkeiten (Priorisierung) 60
Abnahmetest 33

Benutzerabnahmetest 33
betrieblicher Abnahmetest 33

Abnahmetestgetriebene Entwicklung 28, 29, 54
Acceptance Test-Driven Development Siehe

abnahmetestgetriebene Entwicklung
Akzeptanzkriterien 23
Alpha-Test 33
Anforderungsbasierte Priorisierung 60
Anomalie 41, 68
Anweisung 50
Anweisungstest 50
Anweisungsüberdeckung 50
Äquivalenzklassenbildung 45
ATDD Siehe Abnahmestestgetriebene Entwicklung
Auf Zusammenarbeit basierender Testansatz 53
Aufwandsschätzung 59

Breitband-Delphi 59
Drei-Punkt-Schätzung 59
Extrapolation 59
Schätzung basierend auf Verhältniszahlen 59

ausführbare Anweisung 50
Auslieferungskette 68
Auswirkungsanalyse 35
Autor (Reviews) 41

B
Baseline 67
BDD Siehe verhaltensgetriebene Entwicklung
Behavior-Driven Development Siehe

Verhaltensgetriebene Entwicklung
Bestätigungsfehler 25
Beta-Test 33

Black-Box-Test 34, 45
Black-Box-Testverfahren Siehe Black-Box-Test
Blooms Taxonomie 77
Burn-Down-Chart 67

C
CD Siehe kontinuierliche Auslieferung
Checkliste 68
checklistenbasierter Test 52
CI Siehe kontinuierliche Integration
Container-Tools 71
Continuous Delivery Siehe kontinuierliche

Auslieferung
Continuous integration Siehe kontinuierliche

Integration

D
DDD Siehe domänengesteuertes Design
Debugging 17
Definition-of-Done 58
Definition-of-Ready 38, 58
DevOps 30, 35, 68
DevOps-Werkzeuge 71
Domain-Driven Design Siehe domänengesteuertes

Design
domänengesteuertes Design 28
Dynamischer Test 16, 39

E
Each-Choice-Überdeckung 46
Eingangskriterien 23, 58
Endekriterien 23, 43, 58
Entscheidungstabelle 47
erfahrungsbasierte Testverfahren Siehe

erfahrungsbasierter Test
erfahrungsbasierter Test 45, 51
explorativer Test 52
Extreme Programming 28

F
FDD Siehe Feature-getriebene Entwicklung
Feature-Driven Development Siehe Feature-

getriebene Entwicklung
Feature-getriebene Entwicklung 28
Feedback 40, 43
Fehlerangriff 52

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 92 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Fehlerbericht 23, 41, 68
Fehlerdichte 65
Fehlerfindungsrate 65
Fehlermanagement 68
Fehlernachtest 17, 34
Fehlerwirkung 19, 39
Fehlerzustand 19, 38, 39
Fehlhandlung 19
funktionale Angemessenheit 33
funktionale Korrektheit 33
funktionale Vollständigkeit 33

G
Gebrauchstauglichkeit 34
Gegeben/Wenn/Dann 29, 54
geschäftlicher Nutzen 79
Geschäftsregel 47
Grenzwertanalyse 46
Grundursache 19
guard condition Siehe Wächterbedingung
gültige Klasse 46
Gutachter 42

H
Hotfix 35

I
inkrementelles Entwicklungsmodell 28
Inspektion 43
Integrationstest 33, 61
Interaktionsfähigkeit 34
intuitive Testfallermittlung 51
INVEST-Prinzip 54
Irrtum Siehe Fehlhandlung
Iterationsplanung 57
iteratives Entwicklungsmodell 28

K
Kanban 28
kognitive Verzerrung 26
kognitive Wissensstufen 77
Kommunikation 67
Kompatibilität 34
Kompetenzen 24
Komponentenintegrationstest 33
Komponententest 32, 61
Konfigurationselement 67
Konfigurationsmanagement 67
kontinuierliche Auslieferung 30
kontinuierliche Integration 30
kontinuierliche Verbesserung 32
Kontrollflussgraph 50

L
Lean IT 28
Lernziele 79
Lessons Learned 23

M
Managementwerkzeug 71
Manager (Reviews) 41
meantime to failure 65
Metrik 65
Moderator 42

N
nicht-funktionaler Test 31

P
Pareto-Prinzip 20
Performanz 34
Platzhalter 23
Priorisierung von Testfällen 60
Produkt-Backlog 23
Produktrisiko 63
Projektrisiko 62
Protokollant (Reviews) 42
Prototyping 28

Q
Qualität 16, 18
Qualitätsmerkmal 39
Qualitätssicherung 18
Qualitätssteuerung 18

R
Regressionstest 17, 35
Releaseplanung 57
Retrospektive 31
Review 38

formales Review 42
informelles Review 42

Reviewer Siehe Gutachter
Reviewleiter 42
Reviewprozess 41
Reviewverfahren 38
Risiko 16, 62, 66

Eintrittswahrscheinlichkeit des Risikos 62
Schadensausmaß des Risikos 62

Risikoanalyse 62, 63
Risikobasierte Priorisierung 60
Risikobewertung 62, 63

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 93 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Risikoidentifizierung 62, 63
Risikomanagement 62
Risikomatrix 63
Risikominderung 62, 64
Risikosteuerung 62, 64
Risikostufe 62
Risikoüberwachung 62, 64
Risikoverzeichnis 23, 57
Rolle des Testens 24

S
Safety Siehe Sicherheit (Safety)
Schätzung 59
Scrum 28
SDLC Siehe Softwareentwicklungslebenszyklus,
Siehe Softwareentwicklungslebenszyklus

Security Siehe Sicherheit (Security)
sequenzielles Entwicklungsmodell 28
Service-Test 61
Service-Virtualisierung 23
Shift-Left 31
Sicherheit (Safety) 34
Sicherheit (Security) 34
Simulation 33
Simulator 23
Softwareentwicklungslebenszyklus 28
Softwareentwicklungslebenszyklusmodell 57, 68,

71
Spezifikation 34
Spezifikationsworkshop 54
Spiralmodell 28
statische Analyse 31, 38
Statischer Test 16, 17, 38, 39, 51
Steuerungsmaßnahmen 23
System unter Test 33
Systemintegrationstest 33
Systemtest 33

T
TDD Siehe Testgetriebene Entwicklung
Technisches Review 42
Test 16, 17

frühes Testen 20, 31, 38
funktionaler Test 33
kontinuierlicher Test 21
nicht-funktionaler Test 33
risikobasierter Test 62
sitzungsbasierter Test 52
Unabhängigkeit 26
vollständiger / erschöpfender Test 19

Test in Paaren 21
Testablauf 21, 23, 60
Testabschluss 22, 65
Testabschlussbericht 23, 32, 66

Testanalyse 21, 29
Testansatz 57, 58, 62
Testart 33
Testaufwand 59
Testausführungsplan 21, 23
Testautomatisierung 30, 71
Testautomatisierungsframework 55
Testbarkeit 21
Testbasis 21, 23, 33
Testbedingung 21, 23, 53, 54
Testbericht 65
Test-Charta 21, 23, 52
Testdaten 21, 23
Test-Driven Development Siehe Testgetriebene

Entwicklung
Testdurchführung 21
Testentwurf 21, 29
Testergebnis 22, 67
Testfall 21, 23, 60
Test-First-Ansatz 54
Testfortschrittsbericht 23, 65
Testgetriebene Entwicklung 28, 29
Testkonzept 23, 57
Testmanagementrolle 24
Testmetrik 65, 66
Testmittel 21, 22, 23
Testobjekt 16, 21, 33
Testplanung 21, 57
Testprotokoll 23
Testprozess 20, 22
Testpyramide 60
Testquadranten 61
Testrahmen 32
Testrealisierung 21
Testrichtlinie 57
Testskript 21, 23
Teststatus 67
Teststatusbericht 66
Teststeuerung 21, 64
Teststrategie 22, 57
Teststufe 29, 32
Testsuite 21, 23, 60
Testüberwachung 21, 64
Testumgebung 21, 23
Testverfahren 45
Testwerkzeug 71
Testzeitplan 23
Testziel 16, 29, 57
Treiber 23

U
Überdeckung 22, 23, 46, 47, 48, 49, 50, 53
Überdeckung aller Übergänge 49
Überdeckung aller Zustände 49
Überdeckung der gültigen Übergänge 49
Überdeckungsbasierte Priorisierung 60

Certified Tester Lehrplan
Foundation Level

Version 4.0.2 Seite 94 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Überdeckungselement 21, 23, 46, 47, 48, 49, 50,
52

Übertragbarkeit 34
UI-Test 61
unabhängiges Testteam 33
ungültige Klasse 46
Unified Process 28
Unit-Test 61
Unittest-Frameworks 32
User Acceptance Testing 33
User-Story 53, 58

V
Validierung 16, 38
Verfolgbarkeit 23
Verhaltensgetriebene Entwicklung 28, 29, 54
Verifizierung 16, 38
virtuelle Maschinen 71
V-Modell 28

W
Wächterbedingung 48
Walkthrough 42

Wartbarkeit 34
Wartungstest 35
Wasserfallmodell 28
Werkzeug für die Zusammenarbeit 71
Werkzeug für nicht-funktionale Tests 71
Werkzeug für statische Tests 71
Werkzeug für Testrealisierung 71, 85
Werkzeug zur Testdurchführung 71
Werkzeug zur Testüberdeckung 71
Werkzeuge für Testentwurf 71, 85
White-Box-Test 34, 45, 49
White-Box-Testverfahren Siehe White-Box-Test
Whole Team Approach Siehe Whole-Team-Ansatz
Whole-Team-Ansatz 25

Z
Zusammenarbeit 53
Zustandstabelle 48
Zustandsübergangsdiagramm 48
Zustandsübergangstest 49
Zuverlässigkeit 34
Zweigtest 50
Zweigüberdeckung 50

