Lehrplan
ISTQB® Certified Tester

Foundation Level

Version 4.0.2

v
ISTQB-

Certified Tester
Foundation Level

Deutschsprachige Ausgabe. Herausgegeben durch

Austrian Testing Board, German Testing Board e. V. &
Swiss Testing Board

Austrian G I B S I B
Testing Board German Testing Board

SWISS TESTING BOARD

Software. Testing. Excellence.

Ubersetzung des englischsprachigen Lehrplans des International Software Testing
Qualifications Board (ISTQB®), Originaltitel: Certified Tester, Foundation Level Syllabus,
Version 4.0.1

Version 4.0.2 Seite 1 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Urheberschutzvermerk

Dieser ISTQB®-Lehrplan Certified Tester Foundation Level, deutschsprachige Ausgabe, ist
urheberrechtlich geschutzt.

Urheberrecht © an der Ubersetzung in die deutsche Sprache 2024 steht den Mitgliedern der
D.A.CH Arbeitsgruppe Lokalisierung CTFL zu: Stephanie Ulrich (Leitung, GTB), Sabine
Gschwandtner, Joérn Minzel, Arne Becher, Armin Born (STB), Martin Klonk (ATB), Helmut
Pichler (ATB), Horst Pohlmann (GTB), Dr. Erhardt Wunderlich (GTB).

Urheberrecht © 2024 an diesem Lehrplan haben die Autoren der englischen Originalausgabe:
Renzo Cerquozzi, Wim Decoutere, Jean-Frangois Riverin, Arnika Hryszko, Martin Klonk, Meile
Posthuma, Eric Riou du Cosquer (Leitung), Adam Roman, Lucjan Stapp, Stephanie Ulrich
(stellvertretende Leitung), Eshraka Zakaria.

Urheberrecht © 2023 an diesem Lehrplan haben die Autoren der englischen Originalausgabe:
Er wurde gemeinsam von den Teams der Arbeitsgruppen ISTQB Foundation Level und Agile
erstellt: Eric Riou du Cosquer (geteilte Leitung), Stephanie Ulrich (stellvertretende Leitung),
Michaél Pilaeten (geteilte Leitung), Renzo Cerquozzi (stellvertretende Leitung), Wim
Decoutere, Klaudia Dussa-Zieger, Jean-Frangois Riverin, Arnika Hryszko, Martin Klonk, Meile
Posthuma, Stuart Reid, Adam Roman, Lucjan Stapp, Eshraka Zakaria.

Urheberrecht © an der Ubersetzung in die deutsche Sprache 2023 steht den Mitgliedern der
D.A.CH-Arbeitsgruppe Lokalisierung CTFL 4.0 zu:

Stephanie Ulrich (Leiterin, GTB), Ralf Bongard (GTB), Armin Born (STB), Renzo Cerquozzi
(STB), Martin Klonk (ATB), Dr. Seyed Mohsen Ekssir Monafred (ATB), Jorn Munzel, Helmut
Pichler (ATB), Richie Seidl (ATB), Dr. Erhardt Wunderlich (GTB), Dr. Matthias Hamburg (GTB).

Inhaber der ausschlieRlichen Nutzungsrechte an dem Werk sind das German Testing Board
e. V. (GTB), das Austrian Testing Board (ATB) und das Swiss Testing Board (STB).

Die Nutzung des Werks ist — soweit sie nicht nach den nachfolgenden Bestimmungen und
dem Gesetz Uber Urheberrechte und verwandte Schutzrechte vom 9. September 1965 (UrhG)
erlaubt ist — nur mit ausdricklicher Zustimmung des GTB bzw. des ATB oder des STB
gestattet. Dies gilt insbesondere fir die Vervielfaltigung, Verbreitung, Bearbeitung,
Veranderung, Ubersetzung, Mikroverfilmung, Speicherung und Verarbeitung in elektronischen
Systemen sowie die 6ffentliche Zuganglichmachung.

Dessen ungeachtet ist die Nutzung des Werks einschlieRlich der Ubernahme des Wortlauts,
der Reihenfolge sowie Nummerierung der in dem Werk enthaltenen Kapitellberschriften fir
die Zwecke der Anfertigung von Verdffentlichungen, z. B. fur das Marketing eines Kurses,
gestattet. Jede Nutzung des Werks oder von Teilen des Werks ist nur unter Nennung des GTB,
ATB und STB als Inhaber der ausschliellichen Nutzungsrechte sowie der oben genannten
Autoren als Quelle gestattet.

Version 4.0.2 Seite 2 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester
Foundation Level

Anderungsiibersicht der deutschsprachigen Ausgabe

Version Datum Bemerkung

CTFL V4.0.2D 01.03.2025 Deutschsprachige Fassung des CTFL V4.0.1 —
Errata

CTFLV4.01D 16.08.2023 Update Urheberschutzvermerk

CTFLV4.0D 04.08.2023 Deutschsprachige Fassung des ISTQB-
Release 4.0

2018 V3.1D 20.01.2020 Deutschsprachiges Wartungsrelease

2018 D 03.09.2018 Deutschsprachige Fassung des ISTQB-
Release 2018

2011 1-0.2 01.07.2017 Deutschsprachiges Wartungsrelease

2011 1.0.1 19.04.2013 Deutschsprachiges Wartungsrelease

2011 01.08.2011 Wartungsrelease

2010 1.0.1 29.11.2010 Deutschsprachiges Wartungsrelease

2010 01.10.2010 Wartungsrelease

2007 01.12.2007 Wartungsrelease

2005 01.10.2005 Erstfreigabe der deutschsprachigen Fassung
des ISTQB®-Lehrplans ,Certified Tester
Foundation Level*

ASQF V2.2 Juli 2003 ASQF Syllabus Foundation Level Version 2.2
,Lehrplan Grundlagen des Softwaretestens*®

Version 4.0.2 Seite 3 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester

Foundation Level

Anderungsiibersicht Originalausgabe

Version Glltig ab Bemerkungen

CTFL v4.0.1 | 15.09.2024 | CTFL v4.0.1 — Errata

CTFL v4.0 21.04.2023 | CTFL v4.0 — Generelle Releaseversion

CTFLv3.1.1 | 01.07.2021 | CTFL v3.1.1 — Update von Copyright und Logo

CTFL v3.1 11.11.2019 | CTFL v3.1 — Wartungsrelease mit kleineren Updates

ISTQB 2018 | 27.04.2018 | CTFL v3.0 — Generelle Releaseversion

ISTA@B 2011 | 01.04.2011 | Lehrplan Certified Tester Foundation Level, Wartungsrelease

ISTAQB 2010 | 30.03.2010 | Lehrplan Certified Tester Foundation Level, Wartungsrelease

ISTQB 2007 | 01.05.2007 | Lehrplan Certified Tester Foundation Level, Wartungsrelease

ISTQB 2005 | 01.07.2005 | Lehrplan Certified Tester Foundation Level v1.0

ASQF V2.2 07.2003 ASQF Syllabus Foundation Level, Version 2.2 “Lehrplan
Grundlagen des Softwaretestens”

ISEB V2.0 25.02.1999 | ISEB-Lehrplan Software Testing Foundation v2.0

Zur besseren Lesbarkeit wird im gesamten Dokument auf die gleichzeitige Verwendung
mannlicher und weiblicher Sprachformen verzichtet. Es wird das generische Maskulinum
verwendet, wobei unterschiedliche Geschlechter gleichermalRen gemeint sind.

Version 4.0.2 Seite 4 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester .
. ISTQB
Foundation Level s,
Inhaltsverzeichnis
Urheberschutzvermerk 2
Anderungsiibersicht der deutschsprachigen Ausgabe 3
Anderungsiibersicht Originalausgabe 4
Inhaltsverzeichnis 5
Danksagung 8
0. Einfiihrung in diesen Lehrplan 10
0.1 Zweck dieses Dokuments 10
0.2 Certified Tester Foundation Level im Softwaretest 10
0.3 Karriereweg fiir Tester 10
0.4 Geschaftlicher Nutzen 11
0.5 Priifbare Lernziele und kognitive Stufen des Wissens 12
0.6 Die Foundation-Level-Zertifizierungspriifung 12
0.7 Akkreditierung 12
0.8 Umgang mit Standards 12
0.9 Auf dem Laufenden bleiben 13
0.10 Detaillierungsgrad 13
0.11 Aufbau des Lehrplans 13
1. Grundlagen des Testens — 180 Minuten 15
1.1 Wasist Testen? 16
1.1.1 Testziele 16
1.1.2 Testen und Debugging 17
1.2 Warum ist Testen notwendig? 18
1.2.1 Der Beitrag des Testens zum Erfolg 18
1.2.2 Testen und Qualitatssicherung 18
1.2.3 Fehlhandlungen, Fehlerzustande, Fehlerwirkungen und Grundursachen 19
1.3 Grundsatze des Testens 19
1.4 Testaktivitdten, Testmittel und Rollen des Testens 20
14.1 Testaktivitaten und -aufgaben 21
1.4.2 Testprozess im Kontext 22
143 Testmittel 22
1.4.4 Verfolgbarkeit zwischen der Testbasis und den Testmitteln 23
145 Rollen des Testens 24
1.5 Wesentliche Kompetenzen und bewahrte Praktiken beim Testen 24
Version 4.0.2 Seite 5 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester .
. ISTQB
Foundation Level s
15.1 Allgemeine Kompetenzen, die fir das Testen erforderlich sind 24
1.5.2 Whole-Team-Ansatz (Whole Team Approach) 25
153 Unabhéngigkeit des Testens 26
2. Testen wéihrend des Softwareentwicklungslebenszyklus — 130 Minuten 27
2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus (SDLC) 28
2.1.1 Auswirkungen des Softwareentwicklungslebenszyklus auf das Testen 28
2.1.2 Softwareentwicklungslebenszyklus und gute Praktiken fiir das Testen 29
213 Testen als Treiber fir die Softwareentwicklung 29
2.1.4 DevOps und Testen 30
2.15 Shift-Left 31
2.1.6 Retrospektiven und Prozessverbesserung 31
2.2 Teststufen und Testarten 32
2.2.1 Teststufen 32
2.2.2 Testarten 33
2.2.3 Fehlernachtest und Regressionstest 34
2.3 Wartungstest 35
3. Statischer Test — 80 Minuten 37
3.1 Grundlagen des statischen Tests 38
3.1.1 Arbeitsergebnisse, die durch statische Tests untersucht werden kdnnen 38
3.1.2 Wert des statischen Tests 38
313 Unterschiede zwischen statischem Test und dynamischem Test 39
3.2 Feedback- und Reviewprozess 40
3.2.1 Vorteile eines friihzeitigen und haufigen Stakeholder-Feedbacks 40
3.2.2 Aktivitaten des Reviewprozesses 40
323 Rollen und Verantwortlichkeiten bei Reviews 41
3.24 Arten von Reviews 42
3.25 Erfolgsfaktoren fiir Reviews 43
4. Testanalyse und -entwurf — 390 Minuten 44
4.1 Testverfahren im Uberblick 45
4.2 Black-Box-Testverfahren 45
4.2.1 Aquivalenzklassenbildung 45
4.2.2 Grenzwertanalyse 46
4.2.3 Entscheidungstabellentest 47
4.2.4 Zustandsiibergangstest 48
4.3 White-Box-Testverfahren 49
4.3.1 Anweisungstest und Anweisungsiiberdeckung 50
4.3.2 Zweigtest und Zweigliberdeckung 50
4.3.3 Der Wert des White-Box-Tests 51
4.4 Erfahrungsbasierter Test 51
4.4.1 Intuitive Testfallermittlung 51
4.4.2 Explorativer Test 52
4.4.3 Checklistenbasierter Test 52
Version 4.0.2 Seite 6 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .

. ISTQB
Foundation Level s,
4.5 Auf Zusammenarbeit basierende Testansdtze 53
4.5.1 Gemeinsames Schreiben von User-Storys 53
45.2 Akzeptanzkriterien Fehler! Textmarke nicht definiert.
4.5.3 Abnahmetestgetriebene Entwicklung (ATDD) 54
5. Management der Testaktivitiiten — 335 Minuten 56
5.1 Testplanung 57
5.1.1 Zweck und Inhalt eines Testkonzepts 57
5.1.2 Der Beitrag des Testers zur Iterations- und Releaseplanung 57
5.1.3 Eingangskriterien und Endekriterien 58
5.1.4 Schéatzverfahren 59
5.1.5 Priorisierung von Testféllen 60
5.1.6 Testpyramide 60
5.1.7 Testquadranten 61
5.2 Risikomanagement 62
5.2.1 Risikodefinition und Risikoattribute 62
5.2.2 Projektrisiken und Produktrisiken 62
5.2.3 Produktrisikoanalyse 63
5.2.4 Produktrisikosteuerung 64
5.3 Testiiberwachung, Teststeuerung und Testabschluss 64
5.3.1 Beim Testen verwendete Metriken 65
5.3.2 Zweck, Inhalt und Zielgruppen fiir Testberichte 65
5.3.3 Kommunikation des Teststatus 67
5.4 Konfigurationsmanagement 67
5.5 Fehlermanagement 68
6. Testwerkzeuge — 20 Minuten 70
6.1 Werkzeugunterstiitzung fiir das Testen 71
6.2 Nutzen und Risiken von Testautomatisierung 71
7. Literaturhinweise 73
7.1 Normen und Standards 73
7.2 Fachliteratur 73
7.3 Artikel und Internetquellen 75
7.4 Deutschsprachige Biicher und Artikel (in diesem Lehrplan nicht direkt referenziert) 76
8. Anhang A - Lernziele/kognitive Stufen des Wissens 77
9. Anhang B - Verfolgbarkeitsmatrix des geschdiftlichen Nutzens (Business Outcomes)
mit Lernzielen 79
10. Anhang C - Release Notes 85
11. Index 91
Version 4.0.2 Seite 7 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Danksagung

Das englischsprachige Dokument wurde durch den Product Owner / Arbeitsgruppenleiter Eric
Riou du Cosquer am 15. September 2024 offiziell freigegeben.

Es wurde gemeinsam von den Teams der Arbeitsgruppen ISTQB Foundation Level und Agile
erstellt: Renzo Cerquozzi (stellvertretende Leitung Agil), Wim Decoutere, Jean-Frangois
Riverin, Arnika Hryszko, Martin Klonk, Meile Posthuma, Eric Riou du Cosquer (Leitung), Adam
Roman, Lucjan Stapp, Stephanie Ulrich (stellvertretende Leitung), Eshraka Zakaria.

Das englischsprachige Dokument Version 4.0 wurde von der Generalversammlung des
ISTQB® am 21. April 2023 formell freigegeben.

Es wurde gemeinsam von den Teams der Arbeitsgruppen ISTQB Foundation Level und Agile
erstellt: Laura Albert, Renzo Cerquozzi (stellvertretende Leitung), Wim Decoutere, Klaudia
Dussa-Zieger, Chintaka Indikadahena, Arnika Hryszko, Martin Klonk, Kenji Onishi, Michaél
Pilaeten (geteilte Leitung), Meile Posthuma, Gandhinee Rajkomar, Stuart Reid, Eric Riou du
Cosquer (geteilte Leitung), Jean-Frangois Riverin, Adam Roman, Lucjan Stapp, Stephanie
Ulrich (stellvertretende Leitung), Yaron Tsubery, Eshraka Zakaria.

Das Team dankt Stuart Reid, Patricia McQuaid und Leanne Howard fur ihr Technisches
Review sowie dem Reviewteam und den nationalen Mitgliedboards fir ihre Anregungen und
Beitrage.

Die folgenden Personen waren am Review, der Kommentierung und der Abstimmung zu
diesem Lehrplan beteiligt: Adam Roman, Adam Scierski, Agota Horvéth, Ainsley Rood, Ale
Rebon Portillo, Alessandro Collino, Alexander Alexandrov, Amanda Logue, Ana Ochoa, André
Baumann, André Verschelling, Andreas Spillner, Anna Miazek, Armin Born, Arnd Pehl, Arne
Becher, Attila Gyuri, Attila Kovacs, Beata Karpinska, Benjamin Timmermans, Blair Mo, Carsten
Weise, Chinthaka Indikadahena, Chris Van Bael, Ciaran O'Leary, Claude Zhang, Cristina
Sobrero, Dandan Zheng, Dani Almog, Daniel Sather, Daniel van der Zwan, Danilo Magli,
Darvay Tamas Béla, Dawn Haynes, Dena Pauletti, Dénes Medzihradszky, Doris Détzer, Dot
Graham, Edward Weller, Erhardt Wunderlich, Eric Riou Du Cosquer, Florian Fieber, Fran
O'Hara, Francois Vaillancourt, Frans Dijkman, Gabriele Haller, Gary Mogyorodi, Georg Sehl,
Géza Bujdoso Giancarlo Tomasig, Giorgio Pisani, Gustavo Marquez Sosa, Helmut Pichler,
Hongbao Zhai, Horst Pohlmann, Ignacio Trejos, llia Kulakov, Ine Lutterman, Ingvar Nordstrom,
losif Itkin, Jamie Mitchell, Jan Giesen, Jean-Francois Riverin, Joanna Kazun, Joanne
Tremblay, Joélle Genois, Johan Klintin, John Kurowski, Jérn Minzel, Judy McKay, Jurgen
Beniermann, Karol Frihauf, Katalin Balla, Kevin Kooh, Klaudia Dussa-Zieger, Klaus
Erlenbach, Klaus Olsen, Krisztian Miskd, Laura Albert, Liang Ren, Lijuan Wang, Lloyd Roden,
Lucjan Stapp, Mahmoud Khalaili, Marek Majernik, Maria Clara Choucair, Mark Rutz, Markus
Niehammer, Martin Klonk, Marton Siska, Matthew Gregg, Matthias Hamburg, Mattijs
Kemmink, Maud Schlich, May Abu-Sbeit, Meile Posthuma, Mette Bruhn-Pedersen, Michal Tal,
Michel Boies, Mike Smith, Miroslav Renda, Mohsen Ekssir, Monika Stocklein Olsen, Murian
Song, Nicola De Rosa, Nikita Kalyani, Nishan Portoyan, Nitzan Goldenberg, Ole Chr. Hansen,
Patricia McQuaid, Patricia Osorio, Paul Weymouth, Pawel Kwasik, Peter Zimmerer, Petr
Neugebauer, Piet de Roo, Radoslaw Smilgin, Ralf Bongard, Ralf Reif3ing, Randall Rice, Rik
Marselis, Rogier Ammerlaan, Sabine Gschwandtner, Sabine Uhde, Salinda Wickramasinghe,
Salvatore Reale, Sammy Kolluru, Samuel Ouko, Stephanie Ulrich, Stuart Reid, Surabhi

Version 4.0.2 Seite 8 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Bellani, Szilard Szell, Tamas Gergely, Tamas Horvath, Tatiana Sergeeva, Tauhida Parveen,
Thaer Mustafa, Thomas Eisbrenner, Thomas Harms, Thomas Heller, Thomas Letzkus, Tomas
Rosenqvist, Werner Lieblang, Yaron Tsubery, Zhenlei Zuo und Zsolt Hargitai.

Die D.A.CH-Arbeitsgruppe ‘Lokalisierung CTFL 4.0’ dankt den Reviewern fiur ihre Kommentare
und Beitrage: Arne Becher, Florian Fieber, Jan Giesen, Sabine Gschwandtner, Andreas Hetz,
Dr. Matthias Hamburg, Tobias Horn, Thomas Letzkus, Dr. Seyed Mohsen Ekssir Monfared,
Jorn Minzel, Paul Muller, Reto Muller, Manfred Oberlerchner, Horst Pohlmann, Nishan
Portoyan, Prof. Dr. Ralf Reifling, Maud Schlich, Emmi Schuhmacher, Dr. Andreas Spillner,
Dominik Weber, Stephan Weillleder, Marc-Florian Wendland, Carsten Weise, Yu Zou.

ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2018): Klaus Olsen (Leitung), Tauhida
Parveen (stellvertretende Leitung), Rex Black (Projektleitung), Eshraka Zakaria, Debra
Friedenberg, Ebbe Munk, Hans Schaefer, Judy McKay, Marie Walsh, Meile Posthuma, Mike
Smith, Radoslaw Smilgin, Stephanie Ulrich, Steve Toms, Corne Kruger, Dani Almog, Eric Riou
du Cosquer, Igal Levi, Johan Klintin, Kenji Onishi, Rashed Karim, Stevan Zivanovic, Sunny
Kwon, Thomas Milller, Vipul Kocher, Yaron Tsubery und allen nationalen Mitgliedboards fir
ihre Vorschlage.

ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2011): Thomas Miller (Leitung), Debra
Friedenberg. Das Kernteam dankt dem Reviewteam (Dan Almog, Armin Beer, Rex Black, Julie
Gardiner, Judy McKay, Tuula Paakkonen, Eric Riou du Cosquer Hans Schaefer, Stephanie
Ulrich, Erik van Veenendaal) und allen nationalen Mitgliedboards fiur die Anregungen zur
aktuellen Version des Lehrplans.

ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2010): Thomas Mdller (Leitung), Rahul
Verma, Martin Klonk und Armin Beer. Das Kernteam dankt dem Reviewteam (Rex Black, Mette
Bruhn-Pederson, Debra Friedenberg, Klaus Olsen, Judy McKay, Tuula Paakkénen, Meile
Posthuma, Hans Schaefer, Stephanie Ulrich, Pete Williams, Erik van Veenendaal) und allen
nationalen Mitgliedboards fir ihre Anregungen.

ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2007): Thomas Miiller (Leitung), Dorothy
Graham, Debra Friedenberg, und Erik van Veenendaal. Das Kernteam dankt dem Reviewteam
(Hans Schaefer, Stephanie Ulrich, Meile Posthuma, Anders Pettersson und Wonil Kwon) und
allen nationalen Mitgliedboards fur ihre Anregungen.

ISTQB-Arbeitsgruppe Foundation Level (Ausgabe 2005): Thomas Miiller (Leitung), Rex Black,
Sigrid Eldh, Dorothy Graham, Klaus Olsen, Maaret Pyhajarvi, Geoff Thompson und Erik van
Veenendaal. Das Kernteam dankt dem Reviewteam und allen nationalen Mitgliedboards flir
ihre Vorschlage.

Version 4.0.2 Seite 9 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

0. Einfuhrung in diesen Lehrplan

0.1 Zweck dieses Dokuments

Dieser Lehrplan bildet die Grundlage der internationalen Qualifikation fur Softwaretester. Das
German Testing Board e.V. (im Folgenden GTB genannt) hat diesen Lehrplan in
Zusammenarbeit mit dem Austrian Testing Board (ATB) und dem Swiss Testing Board (STB)
in die deutsche Sprache lbersetzt. Das ISTQB® stellt den Lehrplan folgenden Adressaten zur
Verfugung:

1. Nationalen Mitgliedboards, die den Lehrplan in ihre Sprache(n) Ubersetzen und
Schulungsanbieter akkreditieren dirfen. Die nationalen Mitgliedboards durfen den
Lehrplan an die Anforderungen ihrer nationalen Sprache anpassen und Referenzen
hinsichtlich lokaler Veréffentlichungen berlcksichtigen.

2. Zertifizierungsstellen zur Ableitung von Prifungsfragen in ihrer nationalen Sprache, die
an die Lernziele dieses Lehrplans angepasst sind.

3. Schulungsanbieter zur Erstellung von Lehrmaterialien und zur Bestimmung
angemessener Lehrmethoden.

4. Zertifizierungskandidaten zur Vorbereitung auf die Zertifizierungspriifung (entweder als
Teil einer Schulung oder unabhangig davon).

5. Der internationalen Software- und Systementwicklungs-Community zur Férderung des
Berufsbildes des Software- und Systemtesters und als Grundlage fir Blcher und
Fachartikel.

ATB, GTB, STB und ISTQB® kénnen die Nutzung dieses Lehrplans auch anderen
Personenkreisen oder Institutionen fir andere Zwecke genehmigen, sofern diese vorab eine
entsprechende schriftiche Genehmigung einholen.

0.2 Certified Tester Foundation Level im Softwaretest

Die Foundation-Level-Qualifikation richtet sich an alle, die im Bereich des Softwaretestens
tatig sind. Dazu gehdren Personen in Rollen wie Tester, Testanalysten, Testengineer,
Testberater, Testmanager, Softwareentwickler und Mitglieder von Entwicklungsteams. Diese
Foundation-Level-Qualifikation eignet sich auch fir alle, die ein grundlegendes Verstandnis
fir das Testen von Software erwerben mdochten, wie z. B. Projektmanager, Qualitatsmanager,
Product Owner, Softwareentwicklungsmanager, Systemanalytiker (Businessanalysten), IT-
Leiter und Unternehmensberater. Inhaber des Foundation-Zertifikats kdnnen hohere
Qualifikationen im Bereich Softwaretest erwerben.

0.3 Karriereweg fur Tester

Das ISTQB®-Schema unterstiitzt Testexperten in allen Stufen ihrer Karriere und bietet ihnen
sowohl eine breite als auch eine tiefe Wissensbasis. Personen, die die ISTQB®-Zertifizierung
Foundation Level erlangt haben, sind moéglicherweise auch an den Core Advanced Levels

Version 4.0.2 Seite 10 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

(Test Analyst, Technical Test Analyst und Test Management) und den nachfolgenden Expert
Levels (Test Management oder Improving the Test Process) interessiert. Wer sich Fahigkeiten
in der Testtatigkeit in einer agilen Softwareentwicklung aneignen moéchte, kdnnte die
Zertifizierungen Agile Technical Tester oder Agile Test Leadership at Scale in Betracht ziehen.

Der Spezialistenstrang bietet einen tiefen Einblick in Bereiche, die spezifische Testansatze
und Testaktivitdten beinhalten (z. B. Testautomatisierung, Kl-Tests, modellbasiertes Testen,
Testen mobiler Apps), die sich auf bestimmte Testbereiche beziehen (z. B. Performanztests,
Gebrauchstauglichkeitstests, Abnahmetests, Sicherheitstests) oder die das Test-Know-how
fur bestimmte Branchendomanen bundeln (z. B. Automotive oder Gaming).

Aktuelle Informationen Uber das ISTQB®-Certified-Tester-Schema finden Sie unter
www.istqb.org oder auf den Seiten der nationalen Boards, wie z. B. www.gtb.de (Deutschland),
www.austriantestingboard.at (Osterreich) oder swisstestingboard.org (Schweiz).

0.4 Geschaftlicher Nutzen

In diesem Abschnitt werden 14 geschaftliche Nutzen (Business Outcomes, BO) aufgeflhrt, die
von einer Person erwartet werden, die die Foundation-Level-Zertifizierung bestanden hat.

Ein im Foundation Level zertifizierter Tester kann Folgendes:
FL-BO1 Verstehen, was Testen ist und warum es nutzlich ist
FL-BO2 Die grundlegenden Konzepte des Testens von Software verstehen

FL-BO3 Den Testansatz und die anzuwendenden Aktivitaten in Abhangigkeit vom Kontext
des Testens identifizieren

FL-BO4 Die Qualitat der Dokumentation bewerten und verbessern

FL-BO5 Die Effektivitat und Effizienz des Testens steigern

FL-BO6 Den Testprozess an den Softwareentwicklungslebenszyklus anpassen
FL-BO7 Grundsatze des Testmanagements verstehen

FL-BO8 Klare und verstandliche Fehlerberichte schreiben und kommunizieren

FL-BO9 Die Faktoren, die die Prioritaten und den Aufwand fir das Testen beeinflussen,
verstehen

FL-BO10 Als Teil eines funktionstibergreifenden Teams arbeiten

FL-BO11 Risiken und Vorteile der Testautomatisierung kennen

FL-BO12 Wesentliche Fahigkeiten, die fur das Testen erforderlich sind, erkennen
FL-BO13 Die Auswirkungen von Risiken auf das Testen verstehen

FL-BO14 Uber den Testfortschritt und die Qualitat effektiv berichten

Version 4.0.2 Seite 11 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

0.5 Prufbare Lernziele und kognitive Stufen des Wissens

Die Lernziele (Learning Objectives, LO) unterstiitzen den geschéftlichen Nutzen und dienen
zur Ausarbeitung der Prifungen fir die Zertifizierung als Certified Tester Foundation Level. Im
Allgemeinen sind alle Inhalte der Kapitel 1-6 dieses Lehrplans auf K1-Stufe prifbar. Das heifdt,
vom Prufling kann gefordert werden, einen Schllsselbegriff oder ein Konzept aus einem der
sechs Kapitel wiederzuerkennen, sich daran zu erinnern oder wiedergeben zu kdnnen. Die
Stufen der spezifischen Lernziele werden am Anfang jedes Kapitels genannt und wie folgt
klassifiziert:

e K1: Sich erinnern

e K2: Verstehen

e K3: Anwenden

Weitere Einzelheiten und Beispiele fiir Lernziele werden in Anhang 8 aufgezeigt. Alle Begriffe,

die als Schlisselbegriffe direkt unter den KapitelUberschriften aufgelistet sind, missen
bekannt sein (K1), auch wenn sie nicht ausdricklich in den Lernzielen erwahnt werden.

0.6 Die Foundation-Level-Zertifizierungsprufung

Die Foundation-Level-Zertifizierungsprufung basiert auf diesem Lehrplan. Die Beantwortung
der Prifungsfragen kann die Nutzung von Inhalten aus mehr als einem Abschnitt dieses
Lehrplans erfordern. Alle Abschnitte des Lehrplans sind prifungsrelevant, mit Ausnahme der
EinfUhrung und der Anhange. Standards und Buicher sind als Referenzen genannt (Kapitel 7),
ihr Inhalt ist jedoch nicht prifungsrelevant, abgesehen von dem, was im Lehrplan selbst aus
diesen Standards und Biichern zusammengefasst ist. Siehe dazu die Dokumente “Exam
Structures and Rules” und “Exam Structure Tables”.

0.7 Akkreditierung

Ein nationales ISTQB®-Mitgliedboard kann Schulungsanbieter akkreditieren, deren Lehrmate-
rial diesem Lehrplan entspricht. Die Akkreditierungsrichtlinien kdnnen bei diesem nationalen
Board (in Deutschland: German Testing Board e. V.; in der Schweiz: Swiss Testing Board; in
Osterreich: Austrian Testing Board) oder bei einer der Organisationen bezogen werden, die
die Akkreditierung im Auftrag des nationalen Boards durchfuihrt. Eine akkreditierte Schulung
ist als konform mit diesem Lehrplan anerkannt und darf eine ISTQB®-Priifung als Teil der
Schulung enthalten. Die Akkreditierungsrichtlinien fur diesen Lehrplan folgen den allgemeinen
Akkreditierungsrichtlinien, die von der ISTQB-Arbeitsgruppe "Processes Management and
Compliance" veroéffentlicht wurden.

0.8 Umgang mit Standards

Im Foundation-Level-Lehrplan wird auf Normen verwiesen (z. B. IEEE- oder ISO-Normen).
Diese Verweise dienen als Rahmen (wie die Verweise auf ISO 25010 bezlglich der

Version 4.0.2 Seite 12 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Qualitdtsmerkmale) oder als Quelle fur zusatzliche Informationen, falls der Leser dies wiinscht.
Die Inhalte der Standards sind nicht prifungsrelevant. Weitere Informationen tUber Normen
sind in Kapitel 7 nachlesbar.

0.9 Auf dem Laufenden bleiben

Die Softwarebranche verandert sich schnell. Um diesen Veranderungen Rechnung zu tragen
und den Beteiligten Zugang zu relevanten und aktuellen Informationen zu verschaffen, haben
die ISTQB-Arbeitsgruppen auf der Website www.istgb.org Links angelegt, die auf
unterstiitzende Dokumentation und Anderungen von Standards verweisen. Diese
Informationen sind im Rahmen des Foundation-Level-Lehrplans nicht prifungsrelevant.

0.10 Detaillierungsgrad

Der Detaillierungsgrad dieses Lehrplans erlaubt international einheitliche Schulungen und
Prifungen. Um dieses Ziel zu erreichen, enthalt der Lehrplan Folgendes:

e Allgemeine Lehrziele, die die Intention des Foundation Levels beschreiben
e Eine Liste von Begriffen (Schlisselbegriffe), an die sich die Lernenden erinnern mussen

e Lernziele fur jeden Wissensbereich, die die zu erreichenden kognitiven Lernergebnisse
beschreiben

e Eine Beschreibung der wichtigsten Konzepte, einschlieRlich Verweisen auf anerkannte
Quellen

Der Inhalt des Lehrplans ist keine Beschreibung des gesamten Wissensgebiets
.Softwaretesten®. Er spiegelt den Detaillierungsgrad wider, der in Foundation-Level-
Schulungen abgedeckt wird. Der Schwerpunkt liegt auf Konzepten und Verfahren des Testens,
die auf alle Softwareprojekte angewendet werden kdnnen, unabhangig vom verwendeten
Softwareentwicklungslebenszyklus (SDLC).

0.11 Aufbau des Lehrplans

Es gibt sechs Kapitel mit prifungsrelevantem Inhalt. Die Hauptlberschrift eines jeden Kapitels
gibt die Schulungszeit flr das Kapitel an. Fir die Unterkapitel wird keine Zeitangabe gemacht.
Far akkreditierte Schulungen fordert der Lehrplan mindestens 1135 Minuten (18 Stunden und
55 Minuten) Unterricht, die sich wie folgt auf die sechs Kapitel verteilen:

Version 4.0.2 Seite 13 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Kapitel 1: Grundlagen des Testens (180 Minuten)

o Der Lernende eignet sich die grundlegenden Prinzipien des Testens, die Grinde,
warum Testen notwendig ist, und was Ziele des Testens sind, an.

o Der Lernende versteht den Testprozess, die wichtigsten Testaktivitaten und
Testmittel.

o Der Lernende versteht die wesentlichen Fahigkeiten zum Testen.
Kapitel 2: Testen wahrend des Softwareentwicklungslebenszyklus (130 Minuten)

o Der Lernende eignet sich an, wie das Testen in verschiedene
Entwicklungsvorgehensweisen integriert wird.

o Der Lernende eignet sich die Konzepte von Test-First-Ansatzen und DevOps an.

o Der Lernende lernt die verschiedenen Teststufen, Testarten und den Wartungstest
kennen.

Kapitel 3: Statischer Test (80 Minuten)
o Der Lernende eignet sich die Grundlagen des statischen Testens, den Feedback-
und den Reviewprozess an.

Kapitel 4: Testanalyse und -entwurf (390 Minuten)

o Der Lernende erwirbt die Kompetenz Black-Box-, White-Box- und
erfahrungsbasierte Testverfahren anzuwenden, um Testfalle aus verschiedenen
Arbeitsergebnissen der Softwareentwicklung abzuleiten.

o Der Lernende lernt den auf Zusammenarbeit basierenden Testansatz kennen.
Kapitel 5: Management der Testaktivitaten (335 Minuten)

o Der Lernende erwirbt die Kompetenz, wie man Tests im Allgemeinen plant und wie
man den Testaufwand schatzt.

o Der Lernende eignet sich an, wie Risiken den Testumfang beeinflussen kénnen.
o Der Lernende lernt, wie man Testaktivitaten Uberwacht und steuert.

o Der Lernende eignet sich an, wie das Konfigurationsmanagement das Testen
unterstitzt.

o Der Lernende lernt, wie man Fehlerzustande klar und verstandlich berichtet.
Kapitel 6: Testwerkzeuge (20 Minuten)

o Der Lernende erwirbt die Kompetenz, Testwerkzeuge zu klassifizieren und die
Risiken und Nutzen von Testautomatisierung zu verstehen.

Version 4.0.2 Seite 14 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

1. Grundlagen des Testens — 180 Minuten

Schliisselbegriffe

Debugging, Fehlerwirkung, Fehlerzustand, Fehlhandlung, Grundursache, Qualitat,
Qualitatssicherung, Testablauf, Testabschluss, Testanalyse, Testbasis, Testbedingung,
Testdaten, Testdurchfihrung, Testen, Testentwurf, Testergebnis, Testfall, Testmittel,
Testobjekt, Testplanung, Testprozess, Testrealisierung, Teststeuerung, Testlberwachung,
Testziel, Uberdeckung, Validierung, Verfolgbarkeit, Verifizierung

Lernziele fiir Kapitel 1: Der Lernende kann ...
1.1 Was ist Testen?

FL-1.1.1 (K1) ... typische Testziele identifizieren
FL-1.1.2 (K2) ... Testen von Debugging unterscheiden

1.2 Warum ist Testen notwendig?

FL-1.2.1 (K2) ... Beispiele geben, warum Testen notwendig ist
FL-1.2.2 (K1) ... die Beziehung zwischen Testen und Qualitatssicherung wiedergeben

FL-1.2.3 (K2) ... zwischen Grundursache, Fehlhandlung, Fehlerzustand und Fehlerwirkung
unterscheiden

1.3 Grundsitze des Testens
FL-1.3.1 (K2) ... die sieben Grundsatze des Testens erklaren
14 Testaktivitaten, Testmittel und Rollen des Testens

FL-1.4.1 (K2) ... die verschiedenen Testaktivitadten und die damit verbundenen Aufgaben

erklaren
FL-1.4.2 (K2) ... die Auswirkungen des Kontexts auf den Testprozess erklaren
FL-1.4.3 (K2) ... Testmittel, die die Testaktivitdten unterstitzen, unterscheiden
FL-1.4.4 (K2) ... die Bedeutung der Pflege der Verfolgbarkeit erklaren
FL-1.4.5 (K2) ... die verschiedenen Rollen beim Testen vergleichen

1.5 Wesentliche Kompetenzen und bewéhrte Praktiken beim Testen

FL-1.5.1 (K2) ... Beispiele fur die allgemeinen Kompetenzen, die fir das Testen erforderlich
sind, geben

FL-1.5.2 (K1) ... die Vorteile des Whole-Team-Ansatzes wiedergeben

FL-1.5.3 (K2) ... die Vor- und Nachteile des unabhangigen Testens unterscheiden

Version 4.0.2 Seite 15 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

1.1 Was ist Testen?

Softwaresysteme sind ein integraler Bestandteil unseres taglichen Lebens. Die meisten
Menschen haben bereits Erfahrung mit Software gemacht, die nicht wie erwartet funktioniert.
Software, die nicht ordnungsgemal funktioniert, kann zu vielen Problemen fiihren, unter
anderem zu Geld-, Zeit- oder Ansehensverlust und in Extremfallen sogar zu Verletzung oder
Tod. Softwaretests bewerten die Qualitdt der Software und helfen, das Risiko einer
Fehlerwirkung im Betrieb zu verringern.

Das Testen von Software besteht aus einer Reihe von Aktivititen zur Entdeckung von
Fehlerzustanden und zur Bewertung der Qualitdt von Arbeitsergebnissen der
Softwareentwicklung. Werden diese getestet, werden sie als Testobjekte bezeichnet. Ein weit
verbreitetes Missverstandnis Uber das Testen ist, dass es nur aus dem Ausfihren von Tests
besteht (d. h. dem Ausflihren der Software und der Prifung der Testergebnisse). Das Testen
von Software umfasst jedoch auch andere Aktivititen und muss auf den
Softwareentwicklungslebenszyklus (Software Development Lifecycle, SDLC) abgestimmt sein
(siehe Kapitel 2).

Ein weiteres verbreitetes Missverstandnis Uber das Testen ist, dass sich das Testen
ausschlief3lich auf das Verifizieren des Testobjekts konzentriert. Zwar beinhaltet Testen das
Verifizieren, d. h. das Prufen, ob das System die spezifizierten Anforderungen erfullt, aber
auch das Validieren, d. h. das Prufen, ob das System die Bedirfnisse der Benutzer und
anderer Stakeholder in seiner Betriebsumgebung erflllt.

Testen kann dynamisch oder statisch sein. Beim dynamischen Test wird die Software
ausgeflhrt, beim statischen Test hingegen nicht. Zum statischen Test gehdren Reviews (siehe
Kapitel 3) und statische Analysen. Beim dynamischen Test werden verschiedene
Testverfahren und Testansatze verwendet, um Testfélle abzuleiten (siehe Kapitel 4).

Testen ist nicht nur eine technische Aktivitdt. Es muss auch richtig geplant, verwaltet,
geschatzt, Uberwacht und gesteuert werden (siehe Kapitel 5).

Tester verwenden Werkzeuge (siehe Kapitel 6), aber es ist wichtig, sich daran zu erinnern,
dass Testen eine weitgehend intellektuelle Aktivitat ist. Das erfordert von Testern Fachwissen,
die Anwendung analytischer Fahigkeiten und den Einsatz kritischen Denkens sowie
Systemdenken (Myers 2011, Roman 2018).

Die Norm ISO/IEC/IEEE 29119-1 liefert weitere Informationen Uber Konzepte des
Softwaretestens.

1.1.1 Testziele

Typische Testziele sind:

e Evaluieren von Arbeitsergebnissen wie Anforderungen, User-Storys, Entwirfe und
Code

o Ausldsen von Fehlerwirkungen und Finden von Fehlerzustanden

e Sicherstellen der erforderlichen Uberdeckung eines Testobjekts

Version 4.0.2 Seite 16 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

e Verringern des Risikos einer unzureichenden Softwarequalitat
o \Verifizieren, ob spezifizierte Anforderungen erfullt wurden

o Verifizieren, ob ein Testobjekt den vertraglichen, rechtlichen und regulatorischen
Anforderungen entspricht

e Bereitstellen von Informationen flr die Stakeholder, damit diese fundierte
Entscheidungen treffen kdnnen

e Aufbauen von Vertrauen in die Qualitat des Testobjekts

e Validieren, ob das Testobjekt vollstandig ist und aus Sicht der Stakeholder wie erwartet
funktioniert

Testziele konnen je nach Kontext variieren. Zum Kontext gehoren das zu testende
Arbeitsergebnis, die Teststufe, Risiken, der Softwareentwicklungslebenszyklus und Faktoren
im Zusammenhang mit dem geschaftlichen Kontext, z. B. die Unternehmensstruktur,
Wettbewerbserwagungen oder die Zeit bis zur Markteinfiihrung.

1.1.2 Testen und Debugging

Testen und Debugging sind getrennte Aktivitdten. Testen kann Fehlerwirkungen auslésen, die
durch Fehlerzustdnde in der Software verursacht werden (dynamischer Test), oder direkt
Fehlerzustande im Testobjekt finden (statischer Test).

Wenn ein dynamischer Test (siehe Kapitel 4) eine Fehlerwirkung auslost, geht es beim
Debugging darum, die Ursachen fiir diese Fehlerwirkung (die Fehlerzustande) zu finden, diese
zu analysieren und zu beseitigen. Der typische Debugging-Prozess umfasst in diesem Fall:

e Reproduzieren einer Fehlerwirkung
e Diagnose (den Fehlerzustand finden)

e Behebung des Fehlerzustands

AnschlieBende Fehlernachtests priifen, ob das Problem durch die Korrekturen behoben
wurde. Vorzugsweise wird der Fehlernachtest von derselben Person durchgefihrt, die auch
den ersten Test durchgefihrt hat. AnschlieRende Regressionstests konnen ebenfalls
durchgefuhrt werden, um zu prifen, ob die Korrekturen in anderen Teilen des Testobjekts
Fehlerwirkungen verursachen (fur Informationen Gber Fehlernachtests und Regressionstests
siehe Abschnitt 2.2.3).

Wenn beim statischen Test ein Fehlerzustand festgestellt wird, geht es beim Debugging
darum, diesen zu beseitigen. Reproduktion oder Diagnose sind nicht erforderlich, da statische
Tests direkt Fehlerzustande finden und keine Fehlerwirkungen auslésen kdnnen (siehe Kapitel
3).

Version 4.0.2 Seite 17 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

1.2 Warum ist Testen notwendig?

Testen als eine Form der Qualitatssteuerung tragt dazu bei, die vereinbarten Testziele
innerhalb des festgelegten Umfangs sowie der Zeit-, Qualitats- und Budgetvorgaben zu
erreichen. Der Beitrag des Testens zum Erfolg sollte nicht auf die Aktivitdten des Testteams
beschrankt sein. Jeder Stakeholder kann seine Testkompetenzen einsetzen, um das Projekt
dem Erfolg naher zu bringen. Das Testen von Komponenten, Systemen und der zugehdrigen
Arbeitsergebnisse (z. B. Dokumentation) hilft bei der Ermittlung von Fehlerzustanden in der
Software.

1.2.1 Der Beitrag des Testens zum Erfolg

Testen ist ein kosteneffizientes Mittel zur Erkennung von Fehlerzustdanden. Diese
Fehlerzustande kénnen dann beseitigt werden (durch Debugging — eine Aktivitat, die nicht zum
Testen gehort), so dass das Testen indirekt zu einer héheren Qualitat der Testobjekte beitragt.

Testen bietet ein Mittel zur direkten Bewertung der Qualitat eines Testobjekts in verschiedenen
Phasen des SDLC. Diese Messgrolen werden als Teil einer gréReren
Projektmanagementaktivitat verwendet und tragen zu Entscheidungen fiir den Ubergang zur
nachsten Phase des SDLC bei, z. B. zur Freigabeentscheidung.

Testen bietet den Benutzern eine indirekte Darstellung des Entwicklungsprojekts. Tester
stellen sicher, dass ihr Verstandnis fiir die Bedurfnisse der Benutzer wahrend des gesamten
Entwicklungszyklus berucksichtigt wird. Die Alternative besteht darin, eine reprasentative
Gruppe von Benutzern in das Entwicklungsprojekt einzubeziehen, was in der Regel aufgrund
der hohen Kosten und der mangelnden Verfugbarkeit geeigneter Benutzer nicht moglich ist.

Testen kann auch erforderlich sein, um vertragliche oder gesetzliche Anforderungen zu
erfullen oder um regulatorischen Standards zu entsprechen.

1.2.2 Testen und Qualitatssicherung

Obwohl die Begriffe "Testen" und "Qualitatssicherung" (oder kurz QS) haufig synonym
verwendet werden, sind Testen und Qualitatssicherung nicht dasselbe.

Testen ist ein produktorientierter, korrigierender Ansatz, der sich auf jene Aktivitaten
konzentriert, die das Erreichen eines angemessenen Qualitatsniveaus unterstutzen. Testen ist
eine der wichtigsten Formen der Qualitdtssteuerung, andere sind formale Methoden
(Modellprifung und Korrektheitsnachweis), Simulation und Prototyping.

Qualitatssicherung ist ein prozessorientierter, praventiver Ansatz, der sich auf die
Implementierung und Verbesserung von Prozessen konzentriert. Sie geht davon aus, dass ein
guter Prozess, wenn er korrekt durchgefihrt wird, ein gutes Produkt hervorbringt.
Qualitatssicherung bezieht sich sowohl auf den Entwicklungs- als auch auf den Testprozess
und liegt in der Verantwortung aller Projektbeteiligten.

Testergebnisse werden beim Testen und bei der Qualitatssicherung verwendet. Beim Testen
werden sie zur Behebung von Fehlerzustdnden verwendet, wahrend sie in der

Version 4.0.2 Seite 18 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Qualitatssicherung Rickmeldungen daruber liefern, wie gut die Entwicklungs- und
Testprozesse funktionieren.

1.2.3 Fehlhandlungen, Fehlerzustande, Fehlerwirkungen und Grundursachen

Menschen begehen Fehlhandlungen (Irrtimer), die zu Fehlerzustanden (Defekten) flhren,
was wiederum zu Fehlerwirkungen fliihren kann. Menschen machen aus verschiedenen
Grunden Fehlhandlungen, wie z. B. wegen Zeitdruck, Komplexitat von Arbeitsergebnissen,
Prozessen, Infrastruktur oder Interaktionen, oder einfach, weil sie erschépft sind oder nicht
ausreichend geschult wurden.

Fehlerzustande kénnen in der Dokumentation, z. B. in einer Anforderungsspezifikation oder
einem Testskript, im Quellcode oder in einem unterstiitzenden Arbeitsergebnis, z. B. einer
Build-Datei, gefunden werden. Fehlerzustéande in Arbeitsergebnissen, die zu einem friheren
Zeitpunkt im SDLC erstellt wurden, fiihren, wenn sie unentdeckt bleiben, haufig zu fehlerhaften
Arbeitsergebnissen im spateren Verlauf des Lebenszyklus. Wenn ein Fehlerzustand im Code
ausgefuhrt wird, kann es sein, dass das System nicht das tut, was es tun sollte, oder etwas
tut, was es nicht tun sollte, was zu einer Fehlerwirkung flhrt. Einige Fehlerzustande
resultieren, wenn sie ausgefuhrt werden, immer in einer Fehlerwirkung, wahrend andere nur
unter bestimmten Umsténden zu einer Fehlerwirkung flhren, und wieder andere fihren nie zu
einer Fehlerwirkung.

Fehlhandlungen und Fehlerzustande sind nicht die einzige Ursache von Fehlerwirkungen.
Fehlerwirkungen konnen auch durch Umweltbedingungen verursacht werden, z. B. wenn
Strahlung oder elektromagnetische Felder Fehlerzustéande in der Firmware verursachen.

Eine Grundursache (root cause) ist ein wesentlicher Grund fur das Auftreten eines Problems
(z. B. eine Situation, die zu einer Fehlhandlung fihrt). Grundursachen werden durch eine
Grundursachenanalyse ermittelt, die normalerweise durchgefihrt wird, wenn eine Fehlerwir-
kung auftritt oder ein Fehlerzustand festgestellt wird. Es wird davon ausgegangen, dass
weitere ahnliche Fehlerwirkungen oder Fehlerzustande verhindert werden kdnnen oder ihre
Haufigkeit verringert werden kann, wenn die Grundursache angegangen wird, z. B. durch ihre
Beseitigung.

1.3 Grundsatze des Testens

Im Laufe der Jahre wurde eine Reihe von Grundsatzen des Testens angeregt, die allgemeine
Richtlinien fir alle Tests bieten. Dieser Lehrplan beschreibt sieben solcher Grundsatze.

1. Testen zeigt das Vorhandensein, nicht die Abwesenheit von Fehlerzustanden. Testen
kann zeigen, dass Fehlerzustande im Testobjekt vorhanden sind, kann aber nicht beweisen,
dass es keine Fehlerzustande gibt (Buxton 1970). Testen verringert die Wahrscheinlichkeit,
dass Fehlerzustdnde im Testobjekt unentdeckt bleiben, aber selbst, wenn keine
Fehlerzustdnde gefunden werden, kann Testen nicht die Korrektheit des Testobjekts
beweisen.

2. Vollstandiges Testen ist unmoglich. Es ist nicht mdglich, alles zu testen, aufer in trivialen
Fallen (Manna 1978). Anstatt zu versuchen, vollstandig zu testen, sollten Testverfahren (siehe

Version 4.0.2 Seite 19 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Kapitel 4), Priorisierung von Testfallen (siehe Abschnitt 5.1.5) und risikobasiertes Testen
(siehe Abschnitt 5.2) angewendet werden, um den Testaufwand gezielt einzusetzen.

3. Friihes Testen spart Zeit und Geld. Fehlerzustéande, die in einem friihen Stadium des
Prozesses beseitigt werden, verursachen keine weiteren Fehlerzustande in abgeleiteten
Arbeitsergebnissen. Die Qualitdtskosten werden gesenkt, da spater im SDLC weniger
Fehlerwirkungen auftreten (Boehm 1981). Um Fehlerzustédnde frihzeitig zu finden, sollte
sowohl mit statischen Tests (siehe Kapitel 3) als auch mit dynamischen Tests (siehe
Kapitel 4) so friih wie mdglich begonnen werden.

4. Fehlerzustande treten gehauft auf. Eine kleine Anzahl von Komponenten eines Systems
enthalt in der Regel die meisten der entdeckten Fehlerzustdnde oder ist fir die meisten
Fehlerwirkungen im Betrieb verantwortlich (Enders 1975). Dieses Phanomen ist eine
Veranschaulichung des Pareto-Prinzips. Vorausgesagte Anhaufungen von Fehlerzustanden
und die tatsachlich beobachteten Fehlerzustande im Test oder im Betrieb sind ein wichtiger
Beitrag fur den risikobasierten Test (siehe Abschnitt 5.2).

5. Tests nutzen sich ab. Wenn dieselben Tests viele Male wiederholt werden, werden sie bei
der Erkennung neuer Fehlerzustdnde zunehmend ineffektiv (Beizer 1990). Um diesen Effekt
zu Uberwinden, mussen bestehende Tests und Testdaten moglicherweise modifiziert und neue
Tests geschrieben werden. In einigen Fallen kann die Wiederholung der gleichen Tests jedoch
zu einem positiven Ergebnis flhren, z. B. bei automatisierten Regressionstests (siehe
Abschnitt 2.2.3).

6. Testen ist kontextabhéangig. Es gibt keinen universell anwendbaren Ansatz fir das Testen.
Das Testen wird in verschiedenen Kontexten unterschiedlich praktiziert (Kaner 2011).

7. Trugschluss: ,,Keine Fehler” bedeutet ein brauchbares System. Es ist ein Irrtum (d. h.
ein Trugschluss) zu erwarten, dass das Verifizieren von Software den Erfolg eines Systems
sicherstellt. Das griindliche Testen aller spezifizierten Anforderungen und das Beheben aller
gefundenen Fehlerzustande koénnte immer noch ein System hervorbringen, das die
Bedirfnisse und Erwartungen der Benutzer nicht erfillt, das nicht dazu beitragt, die
Geschaftsziele des Kunden zu erreichen, und das im Vergleich zu anderen konkurrierenden
Systemen minderwertig ist. Neben der Verifizierung sollte auch eine Validierung durchgefuhrt
werden (Boehm 1981).

1.4 Testaktivitaten, Testmittel und Rollen des Testens

Testen ist kontextabhangig, aber auf einem hohen Abstraktionsniveau gibt es Gruppen von
Testaktivitaten, ohne die die Wahrscheinlichkeit, dass die Testziele erreicht werden kdnnen,
geringer ist. Diese Gruppen von Testaktivitaten bilden einen Testprozess. Der Testprozess
kann auf der Grundlage verschiedener Faktoren auf eine bestimmte Situation zugeschnitten
werden. Welche Testaktivitaten zu diesem Testprozess gehoren, wie sie durchgefihrt werden
und wann sie stattfinden, wird normalerweise im Rahmen der Testplanung fir die jeweilige
Situation entschieden (siehe Abschnitt 5.1).

In den folgenden Abschnitten werden die allgemeinen Aspekte dieses Testprozesses in Bezug
auf die Testaktivitdten und -aufgaben, der Einfluss des Kontexts, die Testmittel, die
Verfolgbarkeit zwischen Testbasis und Testmitteln sowie die Rollen im Testen beschrieben.

Version 4.0.2 Seite 20 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Die Norm ISO/IEC/IEEE 29119-2 enthalt weitere Informationen lUber Testprozesse.

1.4.1 Testaktivitaten und -aufgaben

Ein Testprozess besteht in der Regel aus den unten beschriebenen Hauptgruppen von
Aktivitaten. Obwohl viele dieser Aktivitaten einer logischen Abfolge zu folgen scheinen, werden
sie oft iterativ oder parallel durchgefiihrt. Diese Testaktivitaten missen in der Regel auf das
System und das Projekt zugeschnitten werden.

Die Testplanung besteht darin, die Testziele zu definieren und dann eine
Testvorgehensweise auszuwahlen, mit der die Testziele innerhalb der durch den
Gesamtkontext auferlegten Randbedingungen am besten erreicht werden konnen. Die
Testplanung wird in Abschnitt 5.1 ndher erlautert.

Testiiberwachung und Teststeuerung. Die Testiberwachung umfasst die laufende
Uberpriifung aller Testaktivitdten und den Vergleich des tatsichlichen Fortschritts mit dem
Plan. Bei der Teststeuerung werden die erforderlichen KorrekturmaRnahmen ergriffen, um die
Testziele zu erreichen. Testuberwachung und Teststeuerung werden in Abschnitt 5.3 naher
erlautert.

Die Testanalyse umfasst die Analyse der Testbasis, um testbare Merkmale zu identifizieren.
Die zugehérigen Testbedingungen werden bestimmt und priorisiert, wobei die damit
verbundenen Risiken und Risikostufen (siehe Abschnitt Fehler! Verweisquelle konnte nicht g
efunden werden.) bertcksichtigt werden. Die Testbasis und das Testobjekt werden auch
gepruft, um darin enthaltene Fehlerzustande zu identifizieren und ihre Testbarkeit zu
beurteilen. Die Testanalyse wird haufig durch den Einsatz von Testverfahren unterstitzt (siehe
Kapitel 4). Die Testanalyse beantwortet die Frage "Was soll getestet werden?" in Form von
messbaren Uberdeckungskriterien.

Der Testentwurf umfasst die Ausarbeitung der Testbedingungen zu Testfallen und anderen
Testmitteln (z. B. Test-Chartas). Dabei werden haufig Uberdeckungselemente identifiziert, die
als Leitfaden fir die Spezifizierung der Testfalleingaben dienen. Testverfahren (siehe Kapitel
4) kénnen zur Unterstltzung dieser Aktivitdt eingesetzt werden. Zum Testentwurf gehdren
auch die Definition von Anforderungen an die Testdaten, der Entwurf der Testumgebung und
die Identifizierung der bendtigten Infrastruktur und Werkzeuge. Der Testentwurf beantwortet
die Frage "Wie soll getestet werden?".

Die Testrealisierung umfasst die Erstellung oder Beschaffung der fir die Testdurchfiihrung
erforderlichen Testmittel (z. B. Testdaten). Testfdlle kdnnen in Testablaufen organisiert
werden, die wiederum oft zu Testsuiten zusammengestellt werden. Es werden manuelle und
automatisierte Testskripte erstellt. Die Testablaufe werden priorisiert und in einem
Testausfuhrungsplan angeordnet, um eine effiziente Testdurchfihrung zu gewahrleisten
(siehe Abschnitt 5.1.5). Die Testumgebung wird aufgebaut und ihre korrekte Einrichtung
verifiziert.

Die Testdurchfiihrung umfasst die Ausfliihrung der Tests gemal dem Testausflihrungsplan
(Testlaufe). Tests kdnnen dabei manuell oder automatisiert ausgefuhrt werden. Die
Testdurchfihrung kann viele Formen annehmen, wie kontinuierlichen Test oder Testsitzungen
in Paaren. Die Istergebnisse des Tests werden mit den erwarteten Ergebnissen verglichen.

Version 4.0.2 Seite 21 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Die Testergebnisse werden protokolliert. Abweichungen zwischen tatsachlichem und
erwartetem Ergebnis werden analysiert, um ihre wahrscheinlichen Ursachen zu ermitteln.
Diese Analyse ermdglicht eine Berichterstattung Gber die Abweichung auf der Grundlage der
beobachteten Fehlerwirkungen (siehe Abschnitt 5.5).

Der Testabschluss findet in der Regel zu Projektmeilensteinen statt (z. B. Freigabe, Ende der
Iteration, Abschluss der Teststufe). Fur alle nicht behobenen Fehlerzustande werden
Anderungsantrage (Change Requests) oder Produkt-Backlog- Eintrage erstellt. Alle Testmittel,
die fur die Zukunft nltzlich sein kdnnten, werden identifiziert und archiviert oder an die entspre-
chenden Teams Ubergeben. Die Testumgebung wird in einen vereinbarten Zustand gebracht.
Die Testaktivitaten werden analysiert, um Lessons Learned und Verbesserungen fir zukunf-
tige lterationen, Releases oder Projekte zu ermitteln (siehe Abschnitt 2.1.6). Es wird ein
Testabschlussbericht erstellt und an die Stakeholder kommuniziert.

1.4.2 Testprozess im Kontext

Testen wird nicht isoliert durchgeflhrt, sondern alle Testaktivitdten sind ein integraler
Bestandteil der Entwicklungsprozesse innerhalb einer Organisation. Das Testen wird auch von
den Stakeholdern finanziert und soll letztendlich dazu beitragen, die Geschéftsanforderungen
der Stakeholder zu erflllen. Daher hangt die Art und Weise, wie das Testen durchgefuihrt wird,
von einer Reihe von Kontextfaktoren ab, darunter:

e Stakeholder (Bedurfnisse, Erwartungen, Anforderungen, Bereitschaft zur Zusammen-
arbeit usw.)

e Teammitglieder (Kompetenz, Wissen, Erfahrungsstand, Verfugbarkeit,
Schulungsbedarf usw.)

¢ Unternehmensbereich (Kritikalitat des Testobjekts, identifizierte Risiken,
Marktbedurfnisse, spezifische gesetzliche Vorschriften usw.)

e Technische Faktoren (Art der Software, Produktarchitektur, verwendete Technologie
usw.)

¢ Projektbedingte Randbedingungen (Umfang, Zeit, Budget, Ressourcen usw.)

¢ Organisatorische Faktoren (Organisationsstruktur, bestehende Richtlinien,
angewandte Praktiken usw.)

¢ Softwareentwicklungslebenszyklus (technologische Praktiken,
Entwicklungsmethoden usw.)

o Werkzeuge (Verfiigbarkeit, Gebrauchstauglichkeit, Konformitat usw.)

Diese Faktoren wirken sich auf viele testbezogene Aspekte aus, darunter: Teststrategie,
verwendete Testverfahren, Grad der Testautomatisierung, geforderte Uberdeckung,
Detaillierungsgrad der Testmittel, Testberichterstattung usw.

1.4.3 Testmittel

Testmittel werden als Arbeitsergebnisse aus den in Abschnitt 1.4.1 beschriebenen
Testaktivitaten erstellt. Es gibt erhebliche Unterschiede in der Art und Weise, wie verschiedene
Organisationen ihre Arbeitsergebnisse erstellen, gestalten, benennen, organisieren und
verwalten. Ein ordnungsgemales Konfigurationsmanagement (siehe Abschnitt 5.4)

Version 4.0.2 Seite 22 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

gewahrleistet die Konsistenz und Integritédt der Arbeitsergebnisse. Die folgende Liste der
Arbeitsergebnisse erhebt keinen Anspruch auf Vollstandigkeit:

e Zu den Arbeitsergebnissen der Testplanung gehdéren: Testkonzept, Testzeitplan,
Risikoverzeichnis sowie Eingangskriterien und Endekriterien (siehe Abschnitt 5.1). Das
Risikoverzeichnis ist eine Liste von Risiken mit ihrer jeweiligen
Eintrittswahrscheinlichkeit, ihrem Schadensausmall und Informationen zur
Risikominderung (siehe Abschnitt 5.2.4). Testzeitplan, Risikoverzeichnis sowie
Eingangskriterien und Endekriterien sind haufig Teil des Testkonzepts.

e Zuden Arbeitsergebnissen der Testiiberwachung und Teststeuerung gehoren:
Testfortschrittsberichte (siehe Abschnitt 5.3.2), Dokumentation der
Steuerungsmaflnahmen (siehe Abschnitt 5.3) und Informationen Uber Risiken (siehe
Abschnitt 5.2).

e Zuden Arbeitsergebnissen der Testanalyse gehoren: (priorisierte) Testbedingun-
gen (z. B. Akzeptanzkriterien , siehe Abschnitt 4.5.2) und Fehlerberichte tber
Fehlerzustande in der Testbasis (falls nicht direkt behoben).

e Zuden Arbeitsergebnissen des Testentwurfs gehoren: (priorisierte) Testfélle, Test-
Chartas, Uberdeckungselemente, Anforderungen an Testdaten und an
Testumgebungen.

e Zuden Arbeitsergebnissen der Testrealisierung gehoren: Testablaufe, manuelle
und automatisierte Testskripte, Testsuiten, Testdaten, Testausfliihrungsplane und
Bestandteile der Testumgebung. Beispiele fur Bestandteile der Testumgebung sind:
Platzhalter, Treiber, Simulatoren und Dienst-Virtualisierungen (service virtualizations).

e Zu den Arbeitsergebnissen der Testdurchfiihrung gehoren: Testprotokolle und
Fehlerberichte (siehe Abschnitt 5.5).

e Zuden Arbeitsergebnissen des Testabschlusses gehoren: Testabschlussberichte
(siehe Abschnitt 5.3.2), MaRnahmen zur Verbesserung nachfolgender Projekte oder
Iterationen, dokumentierte Lessons Learned und Anderungsantrage (z. B. als
Elemente des Produkt-Backlogs).

1.4.4 Verfolgbarkeit zwischen der Testbasis und den Testmitteln

Fur eine effektive Testiberwachung und Teststeuerung ist es wichtig, wahrend des gesamten
Testprozesses eine Verfolgbarkeit zwischen den Bestandteilen der Testbasis, den mit diesen
Bestandteilen verbundenen Testmitteln (z. B. Testbedingungen, Risiken, Testfalle), den
Testergebnissen und den Fehlerzustanden herzustellen und zu pflegen.

Eine genaue Verfolgbarkeit unterstiitzt die Bewertung der Uberdeckung, daher ist es sehr
nitzlich, wenn in der Testbasis messbare Uberdeckungskriterien definiert sind. Die
Uberdeckungskriterien kénnen als wichtige Key-Performance-Indikatoren (KPIs) dienen, um
die Aktivitdten zu steuern, die zeigen, inwieweit die Testziele erreicht wurden (siehe Abschnitt
1.1.1). Zum Beispiel:

e Durch die Verfolgbarkeit von Testfallen zu Anforderungen kann Uberprift werden, ob
die Anforderungen durch Testfalle Gberdeckt werden.

e Durch die Verfolgbarkeit von Testergebnissen zu Risiken kann das Ausmal} des
Restrisikos eines Testobjekts bewertet werden.

Version 4.0.2 Seite 23 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Neben der Bewertung der Uberdeckung ermdglicht eine gute Verfolgbarkeit die Ermittlung der
Auswirkungen von Anderungen, erleichtert Audits und hilft bei der Erfiillung von IT-
Governance-Kriterien. Eine gute Verfolgbarkeit macht auch Testfortschrittsberichte und
Testabschlussberichte leichter verstandlich, indem sie den Status der Bestandteile der
Testbasis enthalten. Dies kann auch dabei helfen, den Stakeholdern die technischen Aspekte
des Testens auf verstandliche Weise zu vermitteln. Die Verfolgbarkeit liefert Informationen zur
Bewertung der Produktqualitat, der Prozessfahigkeit und des Projektfortschritts im Vergleich
zu den Unternehmenszielen.

1.4.5 Rollen des Testens

In diesem Lehrplan werden zwei Hauptrollen des Testens behandelt: eine Rolle des
Testmanagements und eine Rolle des Testens. Die Aktivitdten und Aufgaben, die diesen
beiden Rollen zugewiesen werden, hangen von Faktoren wie dem Projekt- und
Produktkontext, den Kompetenzen der Personen, die diese Rollen innehaben, und der
Organisation ab.

Die Rolle des Testmanagements Ubernimmt die Gesamtverantwortung fur den Testprozess,
das Testteam und die Leitung der Testaktivitaten. Die Rolle des Testmanagements
konzentriert sich hauptsachlich auf die Aktivitdten der Testplanung, Testliberwachung,
Teststeuerung sowie des Testabschlusses. Die Art und Weise, wie die Rolle des
Testmanagements ausgeubt wird, variiert je nach Kontext. Bei der agilen Softwareentwicklung
beispielsweise kdnnen einige der Aufgaben des Testmanagements vom agilen Team
ubernommen werden. Aufgaben, die sich Uber mehrere Teams oder die gesamte Organisation
erstrecken, kdénnen von Testmanagern auferhalb des Entwicklungsteams tbernommen
werden.

Die Rolle des Testens Ubernimmt die Gesamtverantwortung fiir den operativen Aspekt des
Testens. Die Rolle des Testens konzentriert sich hauptsachlich auf die Aktivitaten der
Testanalyse, des Testentwurfs, der Testrealisierung und der Testdurchfihrung.

Diese Rollen kdnnen von verschiedenen Personen zu verschiedenen Zeiten ilbernommen
werden. Die Rolle des Testmanagements kann zum Beispiel von einem Teamleiter, einem
Testmanager, einem Entwicklungsleiter usw. Ubernommen werden. Es ist auch mdglich, dass
eine Person gleichzeitig die Rollen des Testens und des Testmanagements tGbernimmt.

1.5 Wesentliche Kompetenzen und bewahrte Praktiken beim Testen

Kompetenz ist die Fahigkeit, etwas gut zu machen, die sich aus dem Wissen, der Ubung und
der Eignung einer Person ergibt. Gute Tester sollten tGber einige wesentliche Kompetenzen
verfuigen, um ihre Arbeit gut zu machen. Gute Tester sollten effektive Teamplayer sein und in
der Lage sein, Tests mit verschiedenen Graden an Unabhéangigkeit durchzufihren.

1.5.1 Allgemeine Kompetenzen, die fur das Testen erforderlich sind

Die folgenden Kompetenzen sind zwar Uberwiegend allgemeiner Art, aber fir Tester
besonders wichtig:

Version 4.0.2 Seite 24 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

o Testwissen (zur Steigerung der Effektivitat des Testens, z. B. durch den Einsatz von
Testverfahren)

e Grundlichkeit, Sorgfalt, Neugier, Detailgenauigkeit, methodisches Vorgehen (um
Fehlerzustande zu erkennen, insbesondere solche, die schwer zu finden sind)

e Gute Kommunikationsfahigkeit, aktives Zuhdren, Teamfahigkeit (um mit allen
Stakeholdern effektiv zu interagieren, Informationen an andere weiterzugeben,
verstanden zu werden und Fehlerzustande zu berichten und zu diskutieren)

e Analytisches Denken, kritisches Denken, Kreativitat (zur Steigerung der Effektivitat des
Testens)

e Technische Kenntnisse (um die Effizienz des Testens zu steigern, z. B. durch den
Einsatz geeigneter Testwerkzeuge)

e Wissen in der Anwendungsdomane (um Endanwender/Fachbereichsvertreter zu
verstehen und mit ihnen kommunizieren zu kénnen)

Tester sind oft die Uberbringer schlechter Nachrichten. Es ist ein allgemeiner menschlicher
Charakterzug, den Uberbringer schlechter Nachrichten zu verurteilen. Daher ist
Kommunikationsfahigkeit fur Tester von entscheidender Bedeutung. Die Kommunikation von
Testergebnissen kann als Kritik an dem Produkt und seinem Autor aufgefasst werden.
Bestatigungsfehler (Voreingenommenheit) konnen dazu flihren, dass es schwierig ist,
Informationen zu akzeptieren, die nicht mit den bereits bestehenden Uberzeugungen
Ubereinstimmen. Manche Menschen empfinden das Testen als eine destruktive Aktivitat,
obwohl es in hohem Mal3e zum Projekterfolg und zur Qualitat des Produkts beitragt. Um diese
Sichtweise zu verbessern, sollten Informationen Uber Fehlerzustdnde und Fehlerwirkungen
auf konstruktive Weise kommuniziert werden.

1.5.2 Whole-Team-Ansatz (Whole Team Approach)

Eine der wichtigsten Kompetenzen eines Testers ist die Fahigkeit, effektivim Team zu arbeiten
und einen positiven Beitrag zu den Teamzielen zu leisten. Der Whole-Team-Ansatz — eine aus
dem Extreme Programming stammende Praxis (siehe Abschnitt 2.1) — baut auf dieser
Fahigkeit auf.

Beim Whole-Team-Ansatz kann jedes Teammitglied, das Uber die erforderlichen
Kompetenzen verfiigt, jede Aufgabe ausflihren, und jeder ist fir die Qualitat verantwortlich.
Die Teammitglieder teilen sich einen gemeinsamen Arbeitsbereich (physisch oder virtuell), da
der gemeinsame Standort die Kommunikation und Interaktion erleichtert. Der Whole-Team-
Ansatz verbessert die Teamdynamik, fordert die Kommunikation und Zusammenarbeit
innerhalb des Teams und schafft Synergien, da die verschiedenen Kompetenzen innerhalb
des Teams zum Nutzen des Projekts eingesetzt werden.

Tester arbeiten eng mit anderen Teammitgliedern zusammen, um sicherzustellen, dass die
gewlnschte Qualitdt erreicht wird. Dazu gehért die Zusammenarbeit mit
Fachbereichsvertretern, um sie bei der Erstellung geeigneter Abnahmetests zu unterstutzen,
und die Zusammenarbeit mit Entwicklern, um die Teststrategie abzustimmen und uber
Ansatze der Testautomatisierung zu entscheiden. So kdnnen Tester ihr Wissen Uber das

Version 4.0.2 Seite 25 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Testen an andere Teammitglieder weitergeben und die Entwicklung des Produkts positiv
beeinflussen.

Je nach Kontext ist der Whole-Team-Ansatz nicht immer angemessen. In einigen Situationen,
wie z. B. in sicherheitskritischen Bereichen, kann ein hohes Mal® an Unabhangigkeit des
Testens erforderlich sein.

1.5.3 Unabhangigkeit des Testens

Ein gewisser Grad an Unabhangigkeit macht den Tester effektiver bei der Fehlerfindung, da
sich die Voreingenommenheit (kognitive Verzerrungen) zwischen Autor und Tester
unterscheidet (vgl. Salman 2016). Unabhangigkeit ist jedoch kein Ersatz fir Nahe zum
System, z. B. kdnnen Entwickler viele Fehlerzustande in ihrem eigenen Code effizient finden.

Arbeitsergebnisse kénnen von ihrem Autor (keine Unabhangigkeit), von den Kollegen des
Autors aus demselben Team (etwas Unabhangigkeit), von Testern aul3erhalb des Teams des
Autors, aber innerhalb der Organisation (hohe Unabhangigkeit), oder von Testern auf3erhalb
der Organisation (sehr hohe Unabhangigkeit) getestet werden. Bei den meisten Projekten ist
es in der Regel am besten, das Testen mit mehreren Unabhangigkeitsstufen durchzufihren
(z. B. Entwickler, die Komponententests und Komponentenintegrationstests durchfiihren, ein
Testteam, das Systemtests und Systemintegrationstests durchfihrt, und
Fachbereichsvertreter, die Abnahmetests durchfiihren).

Der Hauptvorteil des unabhangigen Testens besteht darin, dass unabhdngige Tester
wahrscheinlich andere Arten von Fehlerwirkungen und Fehlerzustanden erkennen als
Entwickler, aufgrund ihres unterschiedlichen Hintergrunds, ihrer technischen Perspektive und
der Voreingenommenheit der Entwickler. Aulerdem kann ein unabhangiger Tester die
Annahmen, die von den Stakeholdern wahrend der Spezifikation und Implementierung des
Systems gemacht wurden, Uberprifen, in Frage stellen oder widerlegen.

Allerdings gibt es auch einige Nachteile. Unabhangige Tester konnen vom Entwicklungsteam
isoliert sein, was zu mangelnder Zusammenarbeit, Kommunikationsproblemen oder einer
gegnerischen Beziehung mit dem Entwicklungsteam fihren kann. Die Entwickler verlieren
moglicherweise das Geflihl der Verantwortung fir die Qualitadt. Unabhangige Tester kdnnen
als Engpass angesehen oder fir Verzogerungen bei der Freigabe verantwortlich gemacht
werden.

Version 4.0.2 Seite 26 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

2. Testen wahrend des Softwareentwicklungslebenszyklus —
130 Minuten

Schliisselbegriffe

Abnahmetest, Black-Box-Test, Fehlernachtest, funktionaler Test, Integrationstest,
Komponentenintegrationstest, Komponententest, nicht-funktionaler Test, Regressionstest,
Shift-Left, Systemintegrationstest, Systemtest, Testart, Testobjekt, Teststufe, Wartungstest,
White-Box-Test

Lernziele fiir Kapitel 2: Der Lernende kann ...
21 Testen im Kontext eines Softwareentwicklungslebenszyklus

FL-2.1.1 (K2) ... die Auswirkungen des gewahlten Softwareentwicklungslebenszyklus auf das
Testen erklaren

FL-2.1.2 (K1) ... gute Praktiken fir das Testen, die flr alle
Softwareentwicklungslebenszyklen gelten, wiedergeben

FL-2.1.3 (K1) ...

FL-2.1.4 (K2) ... die moglichen Auswirkungen von DevOps auf das Testen zusammenfassen
FL-2.1.5 (K2) ... Shift-Left erklaren

FL-2.1.6 (K2) ...

die Beispiele fur Test-First-Ansatze in der Entwicklung wiedergeben

den Einsatz von Retrospektiven als Mechanismus zur Prozessverbesserung
erklaren

2.2 Teststufen und Testarten

FL-2.2.1 (K2) ... die verschiedenen Teststufen unterscheiden
FL-2.2.2 (K2) ... die verschiedenen Testarten unterscheiden

FL-2.2.3 (K2) ... Fehlernachtests von Regressionstests unterscheiden
2.3 Wartungstest

FL-2.3.1 (K2) ... den Wartungstest und dessen Ausldser zusammenfassen

Version 4.0.2 Seite 27 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester o
Foundation Level [o

2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus (SDLC)

Ein Modell des SDLC (Software Development Lifecycle) ist eine abstrakte, Ubergeordnete
Darstellung des Softwareentwicklungsprozesses. Ein SDLC-Modell definiert, wie innerhalb
des Prozesses verschiedene Entwicklungsphasen und Arten von Aktivitaten logisch und
chronologisch zueinander in Beziehung stehen. Beispiele fir SDLC-Modelle sind: sequenzielle
Entwicklungsmodelle (z. B. Wasserfallmodell, V-Modell), iterative Entwicklungsmodelle (z. B.
Spiralmodell, Prototyping) und inkrementelle Entwicklungsmodelle (z. B. Unified Process).

Einige Aktivitaten innerhalb von Softwareentwicklungsprozessen kénnen auch durch detaillier-
tere Softwareentwicklungsmethoden und agile Praktiken beschrieben werden. Beispiele
hierfir sind: abnahmetestgetriebene Entwicklung (Acceptance Test-Driven Development,
ATDD), verhaltensgetriebene Entwicklung (Behavior-Driven Development, BDD),
domanengesteuertes Design (Domain-Driven Design, DDD), Extreme Programming (XP),
Feature-getriebene Entwicklung (Feature-Driven Development, FDD), Kanban, Lean IT,
Scrum und testgetriebene Entwicklung (Test-Driven Development, TDD).

2.1.1 Auswirkungen des Softwareentwicklungslebenszyklus auf das Testen

Testen muss an den SDLC angepasst werden, um erfolgreich zu sein. Die Auswahl des SDLC
hat Auswirkungen auf:

e Umfang und Zeitpunkt der Testaktivitaten (z. B. Teststufen und Testarten)
o Detaillierungsgrad der Testdokumentation

e Wahl der Testverfahren und des Testansatzes

e Umfang der Testautomatisierung

e Rolle und Aufgaben eines Testers

In sequenziellen Entwicklungsmodellen sind Tester in den Anfangsphasen in der Regel an den
Reviews der Anforderungen, der Testanalyse und dem Testentwurf beteiligt. Der ausfiuhrbare
Code wird normalerweise in den spateren Phasen erstellt, so dass dynamische Tests nicht in
den frihen Phasen des SDLC durchgefiihrt werden kénnen.

Bei einigen iterativen Entwicklungsmodellen und inkrementellen Entwicklungsmodellen wird
davon ausgegangen, dass jede lteration einen funktionierenden Prototyp oder ein Inkrement
des Produkts liefert. Dies impliziert, dass in jeder Iteration sowohl statische Tests als auch
dynamische Tests auf allen Teststufen durchgefiihrt werden kdnnen. Die haufige Lieferung
von Inkrementen erfordert eine schnelle Riickmeldung und umfangreiche Regressionstests.

Bei der agilen Softwareentwicklung wird davon ausgegangen, dass sich wahrend des
gesamten Projekts Anderungen ergeben kdnnen. Daher werden in agilen Projekten eine
schlanke Dokumentation der Arbeitsergebnisse und eine umfassende Testautomatisierung
bevorzugt, um Regressionstests zu erleichtern. AuRerdem kann der Grofteil der manuellen
Tests mit erfahrungsbasierten Testverfahren durchgefuhrt werden (siehe Abschnitt 4.4), die
keine umfangreiche Testanalyse und keinen ausfihrlichen Testentwurf erfordern.

Version 4.0.2 Seite 28 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

2.1.2 Softwareentwicklungslebenszyklus und gute Praktiken fur das Testen

Zu den guten Testpraktiken gehdren, unabhangig vom gewahlten SDLC-Modell, die folgenden
Praktiken:

o Fir jede Softwareentwicklungsaktivitat gibt es eine entsprechende Testaktivitat, so
dass alle Entwicklungsaktivitaten der Qualitatssteuerung unterliegen.

e Unterschiedliche Teststufen (siehe Abschnitt 2.2.1) haben spezifische und
unterschiedliche Testziele, so dass der jeweilige Test angemessen und entsprechend
umfassend ist und Redundanzen vermieden werden.

o Die Testanalyse und der Testentwurf fir eine bestimmte Teststufe beginnen bereits in
der entsprechenden Entwicklungsphase des SDLC, so dass der Test den Grundsatz
des frihen Testens (siehe Abschnitt 1.3) einhalten kann.

e Tester werden in das Review von Arbeitsergebnissen einbezogen, sobald Entwirfe
dieser Arbeitsergebnisse verfugbar sind, so dass friihes Testen und die Fehlerentde-
ckung Shift-Left unterstiitzen kénnen (siehe Abschnitt 2.1.5).

2.1.3 Testen als Treiber fur die Softwareentwicklung

TDD, ATDD und BDD sind ahnliche Entwicklungsansatze, bei denen Tests als Mittel zur
Lenkung der Entwicklung definiert werden. Jeder dieser Ansatze setzt das Prinzip des frihen
Testens um (siehe Abschnitt 1.3) und folgt Shift-Left (siehe Abschnitt 2.1.5), da die Tests
definiert werden, bevor der Code geschrieben wird. Sie unterstitzen ein iteratives Ent-
wicklungsmodell. Diese Ansatze werden wie folgt charakterisiert:

Testgetriebene Entwicklung (TDD):

e Lenkt die Codierung durch Testfélle (unter Verzicht auf einen umfangreichen
Softwareentwurf) (Beck 2003).

e Zuerst werden Tests geschrieben, dann wird der Code geschrieben, um die Tests zu
erflllen, und dann werden Tests und Code Uberarbeitet (Refactoring).

Abnahmetestgetriebene Entwicklung (ATDD) (siehe Abschnitt 4.5.3):

o Leitet Tests aus Akzeptanzkriterien als Teil des Systementwurfs ab (Gartner 2011).

e Tests werden geschrieben, bevor der Teil der Anwendung entwickelt wird, der die
Tests erfillt.

Verhaltensgetriebene Entwicklung (Behavior-Driven Development, BDD):

e Drickt das gewlinschte Verhalten einer Anwendung mit Testfallen aus, die in einer
einfachen, natirlichsprachlichen Form geschrieben und die von Stakeholdern leicht zu
verstehen sind — Ublicherweise unter Verwendung des Gegeben/Wenn/Dann-Formats
(Given/When/Then) (Chelimsky 2010).

e Die Testfalle sollten dann automatisch in ausfihrbare Tests Ubersetzt werden.

Version 4.0.2 Seite 29 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Um die Codequalitdt bei zuklnftigen Anpassungen/Umgestaltungen (Refactoring)
sicherzustellen, konnen bei allen oben genannten Ansatzen die Tests als automatisierte Tests
weiterverwendet werden.

2.1.4 DevOps und Testen

DevOps ist ein organisatorischer Ansatz, der darauf abzielt, Synergien zu schaffen, indem
Entwicklung (einschlieRlich Testen) und Betrieb zusammenarbeiten, um eine Reihe von
gemeinsamen Zielen zu erreichen. DevOps erfordert einen Kulturwandel innerhalb eines
Unternehmens, um die Kluft zwischen Entwicklung (einschlief3lich Testen) und Betrieb zu
uberbricken und gleichzeitig ihre jeweilige Aufgabe gleichwertig zu behandeln. DevOps
fordert Teamautonomie, schnelle Rickmeldungen, integrierte Werkzeugketten und technische
Praktiken wie kontinuierliche Integration (Continuous Integration, Cl) und kontinuierliche
Auslieferung (Continuous Delivery, CD). Dies ermdglicht es den Teams, qualitativ
hochwertigen Code uber eine DevOps-Auslieferungskette (Delivery Pipeline) schneller zu
erstellen, zu testen und freizugeben (Kim 2016).

Aus Sicht des Testens gibt es unter anderem folgende Vorteile von DevOps:

e Schnelle Riickmeldung lber die Codequalitat und ob sich Anderungen nachteilig auf
den bestehenden Code auswirken.

o CI fordert Shift-Left beim Testen (siehe Abschnitt 2.1.5), indem Entwickler dazu
angehalten werden, qualitativ hochwertigen Code zusammen mit Komponententests
und statischer Analyse bereitzustellen.

e Automatisierte Prozesse wie CI/CD werden gefordert, was den Aufbau stabiler
Testumgebungen erleichtert.

¢ Die Sichtbarkeit auf nicht-funktionaler Qualitatsmerkmale nimmt zu (z. B. Performanz,
Zuverlassigkeit).

e Automatisierung durch eine Auslieferungskette reduziert den Bedarf an sich
wiederholenden manuellen Tests.

e Das Risiko einer Regression wird durch den Umfang und die Bandbreite der
automatisierten Regressionstests minimiert.

DevOps ist nicht ohne Risiken und Herausforderungen, dazu gehdéren:
¢ Die DevOps-Auslieferungskette muss definiert und etabliert werden.

e Cl/CD-Werkzeuge missen eingefiihrt und gewartet werden.

e Die Testautomatisierung erfordert zusatzliche Ressourcen und kann schwierig
einzurichten und zu warten sein.

Obwohl DevOps ein hohes Mal} an automatisierten Tests mit sich bringt, sind manuelle Tests
— insbesondere aus Benutzerperspektive — weiterhin erforderlich.

Version 4.0.2 Seite 30 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

2.1.5 Shift-Left

Das Prinzip des frihen Testens (siehe Abschnitt 1.3) wird manchmal auch als Shift-Left
bezeichnet, da es sich um einen Ansatz handelt, bei dem Testen zu einem friiheren Zeitpunkt
im SDLC erfolgt. Shift-Left bedeutet grundsatzlich, dass das Testen friher beginnen sollte,
z. B. nicht erst, wenn der Code implementiert ist oder die Komponenten integriert sind, aber
nicht, dass das Testen spater im SDLC vernachlassigt werden sollte.

Es gibt einige bewahrte Verfahren, die veranschaulichen, wie ein "Shift-Left" beim Testen
erreicht werden kann, dazu gehoren:

e Review der Spezifikation aus der Sicht der Tester. Diese Review-Aktivitaten zu
Spezifikationen finden oft potenzielle Fehlerzustande, wie Mehrdeutigkeiten,
Unvollstandigkeit und Inkonsistenzen.

e Schreiben von Testfallen, bevor der Code geschrieben wird, und Ausflihren des Codes
in einem Testrahmen wahrend der Coderealisierung.

e Verwendung von Cl und noch besser auch CD, da dies schnelle Rickmeldungen und
automatisierte Tests fir Komponenten bietet, die zusammen mit dem Quellcode in das
Code-Repository eingefligt werden.

e Abschluss der statischen Analyse des Quellcodes vor dem dynamischen Testen oder
als Teil eines automatisierten Prozesses.

e Durchfiihrung von nicht-funktionalen Tests, wenn mdglich, beginnend auf der Ebene
der Komponententests. Dies ist eine Form von Shift-Left, da die nicht-funktionalen
Testarten meist erst spat im SDLC durchgefuhrt werden, wenn ein vollstandiges
System und eine reprasentative Testumgebung zur Verfigung stehen.

Shift-Left kann zu Beginn des Prozesses zu zusatzlichen Schulungen, Aufwand und/oder
Kosten flhren. Jedoch gilt die Erwartung, spater im Prozess Aufwand und/oder Kosten zu
sparen.

Fir Shift-Left ist es wichtig, dass die Stakeholder von dem Konzept Uberzeugt sind und es
annehmen.

2.1.6 Retrospektiven und Prozessverbesserung

Retrospektiven werden haufig am Ende eines Projekts oder einer Iteration, bei einem
Releasemeilenstein oder bei Bedarf abgehalten. Zeitpunkt und Organisation der
Retrospektiven hangen von dem jeweiligen SDLC-Modell ab. In diesen Sitzungen diskutieren
die Teilnehmer (nicht nur Tester, sondern z. B. auch Entwickler, Architekten, Product Owner,
Businessanalysten):

e Was war erfolgreich und sollte beibehalten werden?

e Was war nicht erfolgreich und kénnte verbessert werden?

¢ Wie kdnnen die Verbesserungen eingearbeitet und die Erfolge in Zukunft beibehalten
werden?

Version 4.0.2 Seite 31 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Die Ergebnisse sollten festgehalten werden wund sind normalerweise Teil des
Testabschlussberichts (siehe Abschnitt 5.3.2). Retrospektiven sind entscheidend fiir die
erfolgreiche Umsetzung der kontinuierlichen Verbesserung, und es ist wichtig, dass die
empfohlenen Verbesserungen weiterverfolgt werden.

Typische Vorteile flr das Testen sind:

o Erhdhte Effektivitat/Effizienz des Testens, z. B. durch die Umsetzung von Vorschlagen
zur Prozessverbesserung

e Hohere Qualitat der Testmittel, z. B. durch gemeinsames Review der Testprozesse

e Teamzusammenhalt und Lernen, z. B. durch die Moglichkeit, Probleme anzusprechen
und Verbesserungspunkte vorzuschlagen

e Verbesserte Qualitéat der Testbasis, z. B. weil Mangel im Umfang und in der Qualitat
der Anforderungen angesprochen und behoben werden konnten

e Bessere Zusammenarbeit zwischen Entwicklung und Test, z. B. weil die
Zusammenarbeit regelmafig Uberprift und optimiert wird

2.2 Teststufen und Testarten

Teststufen sind Gruppen von Testaktivitdten, die gemeinsam organisiert und verwaltet werden.
Jede Teststufe ist eine Instanz des Testprozesses, die in Bezug auf Software in einer
bestimmten Entwicklungsphase durchgefiihrt wird, von einzelnen Komponenten bis hin zu
kompletten Systemen oder gegebenenfalls Systemen von Systemen.

Teststufen stehen in Beziehung zu anderen Aktivitaten innerhalb des SDLC. In sequenziellen
SDLC-Modellen sind die Teststufen oft so definiert, dass die Endekriterien einer Stufe Teil der
Eingangskriterien fiir die nachste Stufe sind. In einigen iterativen Modellen trifft dies nicht zu.
Entwicklungsaktivitdten kénnen sich Uber mehrere Teststufen erstrecken. Teststufen kénnen
sich zeitlich Gberschneiden.

Testarten sind Gruppen von Testaktivitaten, die sich auf bestimmte Qualitatsmerkmale
beziehen, und die meisten dieser Testaktivititen kdnnen in jeder Teststufe durchgefuhrt
werden.

2.2.1 Teststufen
In diesem Lehrplan werden die folgenden flnf Teststufen beschrieben:

o Der Komponententest (auch Unittest genannt) konzentriert sich auf das Testen von
isolierten Komponenten. Dies erfordert oft spezifische Unterstiitzung, wie Testrahmen
oder Unittest-Frameworks. Komponententests werden normalerweise von Entwicklern
in ihrer Entwicklungsumgebung durchgefuhrt.

e Der Komponentenintegrationstest konzentriet sich auf das Testen der
Schnittstellen und Interaktionen zwischen Komponenten.

Version 4.0.2 Seite 32 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Komponentenintegrationstests sind stark abhangig von der Integrationsstrategie, wie
Bottom-up, Top-down oder Big Bang.

Der Systemtest konzentriert sich auf das Gesamtverhalten und die
Leistungsfahigkeiten eines gesamten Systems oder Produkts und umfasst haufig
funktionale Tests von End-to-End-Aufgaben und nicht-funktionale Tests von
Qualitatsmerkmalen. Bei einigen nicht-funktionalen Qualitdtsmerkmalen ist es besser,
sie an einem vollstandigen System in einer reprasentativen Testumgebung zu testen
(z. B. Gebrauchstauglichkeit). Die Verwendung von Simulationen von Teilsystemen ist
ebenfalls mdglich. Der Systemtest kann von einem unabhangigen Testteam
durchgefuhrt werden und bezieht sich auf Anforderungsspezifikationen fur das System.

Der Systemintegrationstest konzentriert sich auf das Testen der Schnittstellen
zwischen dem System unter Test und anderen Systemen und externen Diensten. Fur
Systemintegrationstests sind geeignete Testumgebungen erforderlich, die
vorzugsweise der Betriebsumgebung entsprechen.

Der Abnahmetest konzentriert sich auf die Validierung und den Nachweis der
Einsatzfahigkeit, d. h., dass das System die Geschéaftsanforderungen des Benutzers
erflllt. |dealerweise sollten Abnahmetests von den vorgesehenen Benutzern
durchgefihrt werden. Die wichtigsten Formen des Abnahmetests sind: der
Benutzerabnahmetest (User Acceptance Testing, UAT), der betriebliche Abnahmetest,
der vertragliche Abnahmetest, der regulatorische Abnahmetest, der Alpha-Test und der
Beta-Test.

Die Teststufen werden in diesem Kapitel durch die folgende Liste von Attributen
unterschieden, um Uberschneidungen von Testaktivitdten zu vermeiden:

222

Testobjekt

Testziele

Testbasis

Fehlerzustande und Fehlerwirkungen

Vorgehensweise und Verantwortlichkeiten

Testarten

Es gibt eine Vielzahl von Testarten, die in Projekten eingesetzt werden konnen. In diesem
Lehrplan werden die folgenden vier Testarten behandelt:

Beim funktionalen Test werden die Funktionen bewertet, die eine Komponente oder ein
System erflllen soll. Die Funktionen sind das, ,was" das Testobjekt tun soll. Das Hauptziel der
funktionalen Tests ist die Uberprifung der funktionalen Vollstandigkeit, der funktionalen
Korrektheit und der funktionalen Angemessenheit.

Beim nicht-funktionalen Test werden andere als die funktionalen Eigenschaften einer
Komponente oder eines Systems bewertet. Beim nicht-funktionalen Test wird gepruft, "wie gut
sich das System verhalt". Das Hauptziel des nicht-funktionalen Tests ist die Uberprifung der

Version 4.0.2 Seite 33 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

nicht-funktionalen Qualitatsmerkmale. Die Norm ISO/IEC 25010 bietet die folgende
Klassifizierung der nicht-funktionalen Qualitadtsmerkmale:

e Performanz

o Kompatibilitat

e Gebrauchstauglichkeit (auch bekannt als Interaktionsfahigkeit)
e Zuverlassigkeit

e Sicherheit (Security)

o Wartbarkeit

e Ubertragbarkeit (auch bekannt als Flexibilitét)

e Sicherheit (Safety)

Manchmal ist es sinnvoll, dass nicht-funktionale Tests schon friih im SDLC beginnen (z. B. im
Rahmen von Reviews oder bereits in Komponententests). Viele nicht-funktionale Tests leiten
sich von funktionalen Tests ab, da sie dieselben funktionalen Tests verwenden, aber prifen,
ob bei der Ausfuhrung der Funktion eine nicht-funktionale Bedingung erflllt ist
(z. B. die Prifung, ob eine Funktion innerhalb einer bestimmten Zeit ausgefihrt wird oder ob
eine Funktion auf eine neue Plattform portiert werden kann). Die spate Entdeckung von nicht-
funktionalen Fehlerzustdnden kann den Erfolg eines Projekts ernsthaft gefahrden. Nicht-
funktionale Tests erfordern manchmal eine sehr spezielle Testumgebung, wie z. B. ein
Gebrauchstauglichkeitslabor flir Gebrauchstauglichkeitstests.

Der Black-Box-Test (siehe Abschnitt 4.2) basiert auf Spezifikationen und leitet die Tests aus
der Dokumentation ab, die sich nicht auf die interne Struktur des Testobjekts bezieht. Das
Hauptziel des Black-Box-Tests besteht darin, das Verhalten des Systems gegen seine
Spezifikationen zu Gberprufen.

Der White-Box-Test (sieche Abschnitt 4.3) ist strukturbasiert und leitet Tests aus der
Implementierung oder der internen Struktur des Systems ab (z. B. Code, Architektur,
Arbeitsablaufe und Datenfliisse). Das Hauptziel des White-Box-Tests besteht darin, die
zugrunde liegende Struktur durch die Tests bis zu einer akzeptablen Stufe zu Gberdecken.

Alle vier oben genannten Testarten kénnen auf allen Teststufen angewandt werden, auch
wenn der Schwerpunkt auf jeder Stufe anders ist. Fir alle genannten Testarten kdnnen
unterschiedliche Testverfahren zur Ableitung von Testbedingungen und Testfallen verwendet
werden.

2.2.3 Fehlernachtest und Regressionstest

Anderungen werden in der Regel an einer Komponente oder einem System vorgenommen,
um entweder durch Hinzufligen eines neuen Features eine Verbesserung oder durch
Beseitigung eines Fehlerzustands eine Korrektur zu erreichen. Das Testen sollte dann auch
Fehlernachtests und Regressionstests beinhalten.

Der Fehlernachtest bestatigt, dass ein urspriinglicher Fehlerzustand erfolgreich behoben
wurde. Je nach Risiko kann man die behobene Version der Software auf verschiedene Arten
testen, z. B.:

Version 4.0.2 Seite 34 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

e Ausfihren aller Tests, die zuvor aufgrund des Fehlerzustands fehlgeschlagen sind,
oder auch durch

e Hinzufiigen neuer Tests, um alle Anderungen zu liberdecken, die zur Behebung des
Fehlerzustands erforderlich waren.

Wenn jedoch die Zeit oder das Geld fir die Behebung von Fehlern knapp ist, kbnnen sich
Fehlernachtests darauf beschranken, lediglich die Testschritte auszufuhren, die die durch den
Fehlerzustand verursachte Fehlerwirkung produziert haben, und zu prifen, ob die
Fehlerwirkung nicht mehr auftritt.

Der Regressionstest bestétigt, dass eine Anderung, einschlieBlich einer bereits getesteten
Fehlerbehebung, keine nachteiligen Folgen hat. Die nachteiligen Folgen konnten die
Komponente betreffen, an der die Anderung vorgenommen wurde, andere Komponenten
desselben Systems oder sogar andere verbundene Systeme. Der Regressionstest muss sich
nicht auf das Testobjekt selbst beschranken, sondern kann sich auch auf die Umgebung
beziehen. Es ist ratsam, zunachst eine Auswirkungsanalyse durchzuflihren, um den Umfang
der Regressionstests zu erkennen. Die Auswirkungsanalyse zeigt, welche Teile der Software
betroffen sein kénnten.

Regressionstestsuiten werden viele Male durchlaufen, und im Allgemeinen nimmt die Anzahl
der Testfalle mit jeder Iteration oder jedem Release zu, so dass sich Regressionstests sehr
gut fir eine Automatisierung eignen. Die Testautomatisierung sollte bereits in einem friihen
Stadium des Projekts beginnen. Wenn CI eingesetzt wird, wie z. B. bei DevOps (siehe
Abschnitt 2.1.4), ist es gute Praxis, auch automatisierte Regressionstests einzubeziehen. Je
nach Situation kann dies Regressionstests auf verschiedenen Teststufen umfassen.

Fehlernachtests und/oder Regressionstests fiir das Testobjekt sind auf allen Teststufen
erforderlich, wenn Fehlerzustdnde behoben und/oder Anderungen fiir diese Teststufen
vorgenommen wurden.

2.3 Wartungstest

Es gibt verschiedene Kategorien von Wartung, sie kann korrigierend sein, sich an Anderungen
in der Umgebung anpassen oder die Leistung oder Wartbarkeit verbessern (Einzelheiten siehe
ISO/IEC 14764), so dass die Wartung geplante Releases/Bereitstellungen und ungeplante
Releases/Bereitstellungen (Hotfixes) umfassen kann. Vor einer Anderung kann eine
Auswirkungsanalyse durchgefiihrt werden, um auf der Grundlage der potenziellen
Auswirkungen auf andere Bereiche des Systems zu entscheiden, ob die Anderung
durchgefihrt werden sollte. Das Testen der Anderungen im operativen System umfasst sowohl
die Bewertung des Erfolgs der Implementierung der Anderung als auch die Uberpriifung auf
mogliche nachteilige Folgen (Regressionstest) in Teilen des Systems, die unverandert bleiben
(was in der Regel der grofite Teil des Systems ist).

Der Umfang des Wartungstests hangt in der Regel ab von:

e dem Grad des Risikos der Anderung,

e der GroRle des bestehenden Systems,

Version 4.0.2 Seite 35 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester

Foundation Level [

nnnnnnnnnnn

dem Umfang der Anderung.

Die Ausldser fir Wartung und Wartungstest kdnnen wie folgt klassifiziert werden:

Anderungen, wie z. B. geplante Erweiterungen (d. h. releasebasiert), korrigierende
Anderungen oder Hotfixes

Upgrades oder Migrationen der Betriebsumgebung, z. B. von einer Plattform auf eine
andere, was Tests der neuen Umgebung sowie der geanderten Software erfordern
kann, oder Tests der Datenkonvertierung, wenn Daten aus einer anderen Anwendung
in das zu wartende System migriert werden.

AulRerbetriebnahme, z. B. wenn eine Anwendung das Ende ihres Lebens erreicht.
Wenn ein System auller Betrieb genommen wird, kann dies Tests der
Datenarchivierung erfordern, falls lange Datenaufbewahrungsfristen erforderlich sind.
Das Testen von Wiederherstellungsverfahren nach der Archivierung kann ebenfalls
erforderlich sein, wenn bestimmte Daten wahrend der Archivierungszeit bendétigt
werden.

Version 4.0.2 Seite 36 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

3. Statischer Test — 80 Minuten

Schliisselbegriffe

Anomalie, dynamischer Test, formales Review, informelles Review, Inspektion, Review,
statische Analyse, statischer Test, Technisches Review, Walkthrough

Lernziele fiir Kapitel 3: Der Lernende kann ...
3.1 Grundlagen des statischen Tests

FL-3.1.1 (K1) ... Arten von Arbeitsergebnissen, die durch statischen Test geprift werden
konnen, erkennen

FL-3.1.2 (K2) ... den Wert statischer Tests erklaren

FL-3.1.3 (K2) ... statischen Test und dynamischen Test vergleichen und gegenuberstellen
3.2 Feedback- und Reviewprozess

FL-3.2.1 (K1) ... Vorteile eines frihzeitigen und haufigen Stakeholder-Feedbacks erkennen
FL-3.2.2 (K2) ... die Aktivitaten des Reviewprozesses zusammenfassen

FL-3.2.3 (K1) ... die bei der Durchfihrung von Reviews den Hauptrollen zugewiesenen
Verantwortlichkeiten wiedergeben

FL-3.2.4 (K2) ... verschiedene Arten von Reviews vergleichen und gegentberstellen

FL-3.2.5 (K1) ... die Faktoren, die zu einem erfolgreichen Review beitragen, wiedergeben

Version 4.0.2 Seite 37 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

3.1 Grundlagen des statischen Tests

Im Gegensatz zum dynamischen Test muss beim statischen Test die zu testende Software
nicht ausgefiihrt werden. Code, Prozessspezifikation, Systemarchitekturspezifikation oder
andere Arbeitsergebnisse werden durch manuelle Prifung (z. B. Review) oder mit Hilfe eines
Werkzeugs (z. B. statische Analyse) bewertet. Zu den Testzielen gehdren die Verbesserung
der Qualitat, die Aufdeckung von Fehlerzustanden und die Bewertung von Merkmalen wie
Lesbarkeit, Vollstandigkeit, Korrektheit, Testbarkeit und Konsistenz. Statische Tests kénnen
sowohl zur Verifizierung als auch zur Validierung eingesetzt werden.

Tester, Fachbereichsvertreter (Product Owner, Businessanalysten etc.) und Entwickler
arbeiten beim Example-Mapping, beim gemeinsamen Schreiben von User-Storys und bei der
Verfeinerung (Refinement) des Backlogs zusammen, um sicherzustellen, dass die User-Storys
und die zugehorigen Arbeitsergebnisse definierten Kriterien entsprechen, z. B. der Definition-
of-Ready (siehe Abschnitt 5.1.3). Reviewverfahren koénnen angewendet werden, um
sicherzustellen, dass die User-Storys vollstdndig und verstandlich sind und testbare
Akzeptanzkriterien enthalten. Indem sie die richtigen Fragen stellen, kénnen Tester die
vorgeschlagenen User-Storys analysieren, hinterfragen und verbessern.

Die statische Analyse kann Probleme vor dem dynamischen Testen aufdecken und ist oft mit
weniger Aufwand verbunden, da keine Testfalle erforderlich sind und in der Regel Werkzeuge
(siehe Kapitel 6) verwendet werden. Die statische Analyse wird haufig in Cl-Frameworks
integriert (siehe Abschnitt 2.1.4). Die statische Analyse wird zwar hauptsachlich zur Erkennung
spezifischer Fehlerzustdande im Code eingesetzt, dient aber auch zur Bewertung der
Wartbarkeit und Sicherheit. Rechtschreibprifung und Werkzeuge zur Prifung der Lesbarkeit
sind weitere Beispiele fur statische Analysewerkzeuge.

3.1.1 Arbeitsergebnisse, die durch statische Tests untersucht werden konnen

Fast jedes Arbeitsergebnis kann mit statischen Tests untersucht werden. Beispiele hierfiir sind
Spezifikation der Anforderungen, Quellcode, Testkonzepte, Testfalle, Produkt-Backlog-
Eintrage, Test-Chartas, Projektdokumentation, Vertrage oder Modelle.

Jedes Arbeitsergebnis, das gelesen und verstanden werden kann, kann Gegenstand eines
Reviews sein. Fur die statische Analyse bendtigen Arbeitsergebnisse jedoch eine Struktur,
anhand derer sie Uberprift werden kdénnen, z. B. Modelle, Code oder Text mit einer formalen
Syntax.

Zu den Arbeitsergebnissen, die sich nicht fur statische Tests eignen, gehdren solche, die flr
den Menschen schwer zu interpretieren sind und die nicht mit Hilfe von Werkzeugen analysiert
werden sollten, z. B. ausfihrbarer Code von Drittanbietern, der aus rechtlichen Griinden nicht
untersucht werden darf.

3.1.2 Wert des statischen Tests

Der statische Test kann Fehlerzustande in den frihesten Phasen des SDLC aufdecken und
erfullt damit den Grundsatz des frihen Testens (siehe Abschnitt 1.3). Es kénnen auch
Fehlerzustande aufgedeckt werden, die durch dynamische Tests nicht erkannt werden

Version 4.0.2 Seite 38 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

koénnen, z. B. nicht erreichbarer Code, nicht wie gewlinscht implementierte Entwurfsmuster,
Fehlerzustande in nicht ausfuhrbaren Arbeitsergebnissen.

Der statische Test bietet die Moglichkeit, die Qualitat von Arbeitsergebnissen zu bewerten und
Vertrauen in sie aufzubauen. Durch die Uberprifung der dokumentierten Anforderungen
kdénnen die Stakeholder auch sicherstellen, dass diese Anforderungen ihre tatsachlichen
Bedurfnisse beschreiben. Da der statische Test bereits in einer frihen Phase des SDLC
durchgefuhrt werden kann, kann ein gemeinsames Verstandnis zwischen den beteiligten
Stakeholdern geschaffen werden. Auch die Kommunikation zwischen den beteiligten
Stakeholdern wird verbessert. Aus diesem Grund ist es empfehlenswert, eine Vielzahl von
Stakeholdern in statische Tests einzubeziehen.

Auch wenn die Durchflihrung von Reviews Kosten verursacht, sind die Gesamtkosten des
Projekts in der Regel wesentlich geringer, als wenn keine Reviews durchgeflihrt werden. Das
liegt daran, dass weniger Zeit und Aufwand fur die Behebung von Fehlerzustanden im
spateren Verlauf des Projekts aufgewendet werden missen.

Bestimmte Fehlerzustdande im Code kénnen durch statische Analyse effizienter aufgedeckt
werden als durch dynamische Tests, was in der Regel sowohl zu weniger Fehler im Code als
auch zu einem geringeren Gesamtentwicklungsaufwand fuhrt.

3.1.3 Unterschiede zwischen statischem Test und dynamischem Test

Statischer Test und dynamischer Test erganzen sich gegenseitig. Sie haben ahnliche Ziele,
wie z. B. die Unterstutzung bei der Erkennung von Fehlerzustanden in Arbeitsergebnissen
(siehe Abschnitt 1.1.1), aber es gibt auch einige Unterschiede, wie z. B.:

e Sowohl statischer Test als auch dynamischer Test (mit Analyse der Fehlerwirkungen)
kénnen zur Entdeckung von Fehlerzustanden flhren, allerdings gibt es einige
Fehlerzustande, die nur durch statischen oder dynamischen Test gefunden werden
konnen.

e Beim statischen Test werden Fehlerzustande direkt gefunden, wahrend beim
dynamischen Test Fehlerwirkungen auftreten, aus denen durch eine anschlieRende
Analyse die zugehdrigen Fehlerzustande ermittelt werden.

e Statischer Test kann leichter Fehlerzustande aufdecken, die auf Pfaden durch den
Code liegen, die selten ausgefiihrt werden oder die schwer durch dynamische Tests
zu erreichen sind.

e Statischer Test kann auf nicht ausflhrbare Arbeitsergebnisse angewandt werden,
wahrend dynamischer Test nur auf ausfihrbare Arbeitsergebnisse angewandt werden
kann.

e Statischer Test kann zur Messung von Qualitdtsmerkmalen verwendet werden, die
nicht von der Ausfihrung des Codes abhangen (z. B. Wartbarkeit), wahrend
dynamischer Test zur Messung von Qualitatsmerkmalen verwendet werden kann, die
von der Ausfiihrung des Codes abhangen (z. B. Performanz).

Version 4.0.2 Seite 39 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Typische Fehlerzustéande, die durch statische Tests leichter und/oder kostengunstiger zu
finden sind, sind:

e Fehlerzustdnde in Anforderungen, z. B. Inkonsistenzen, Mehrdeutigkeiten,
Widerspruche, Auslassungen, Ungenauigkeiten, Duplikationen

e Fehlerzustande im Entwurf, z. B. ineffiziente Datenbankstrukturen, schlechte
Modularitat

e Bestimmte Arten von Fehlerzustanden im Code, z. B. Variablen mit undefinierten
Werten, nicht deklarierte Variablen, unerreichbarer oder duplizierter Code, ibermaRige
Komplexitat des Codes

e Abweichungen von Standards, z. B. mangelnde Einhaltung von Namenskonventionen
in Programmierstandards

¢ Falsche Spezifikation von Schnittstellen, z. B. nicht Gbereinstimmende Anzahl, Art oder
Reihenfolge von Parametern

e Spezifische Arten von Schwachstellen in der Sicherheit, z. B. Pufferiiberlaufe

e Liicken oder Ungenauigkeiten in der Uberdeckung der Testbasis, z. B. fehlende Tests
fur ein Akzeptanzkriterium

3.2 Feedback- und Reviewprozess

3.2.1 Vorteile eines fruhzeitigen und haufigen Stakeholder-Feedbacks

Ein frihzeitiges und haufiges Feedback ermdglicht die frihzeitige Kommunikation von
potenziellen Qualitatsproblemen. Wenn die Stakeholder wahrend des SDLC nur wenig
einbezogen werden, entspricht das zu entwickelnde Produkt mdglicherweise nicht den
urspringlichen oder aktuellen Vorstellungen der Stakeholder. Wenn die Wunsche der
Stakeholder nicht erflllt werden, kann dies zu kostspieligen Nacharbeiten, verpassten
Terminen, Schuldzuweisungen und sogar zu einem kompletten Scheitern des Projekts flhren.

Haufiges Feedback der Stakeholder wahrend des SDLC kann Missverstandnisse uber
Anforderungen vorbeugen und sicherstellen, dass Anderungen an den Anforderungen
verstanden und friher umgesetzt werden. Dies hilft dem Entwicklungsteam dabei, besser zu
verstehen, was es entwickelt. Es ermdglicht ihm, sich auf die Features zu konzentrieren, die
fur die Stakeholder den grofsten Nutzen bringen und die sich am positivsten auf die
identifizierten Risiken auswirken.

3.2.2 Aktivitaten des Reviewprozesses

Die Norm ISO/IEC 20246 definiert einen generischen Reviewprozess, der einen strukturierten,
aber flexiblen Rahmen bietet, auf dessen Grundlage ein spezifischer Reviewprozess auf eine
bestimmte Situation zugeschnitten werden kann. Wenn das geforderte Review eher formal ist,
werden mehr der beschriebenen Aufgaben fir die verschiedenen Aktivitdten bendtigt.

Version 4.0.2 Seite 40 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Viele Arbeitsergebnisse sind zu umfangreich, als dass sie in einem einzigen Review behandelt
werden konnten. Der Reviewprozess kann daher mehrfach durchgeflihrt werden, um das
Review fur das gesamte Arbeitsergebnis zu vervollstandigen.

Die Aktivitaten des Reviewprozesses sind:

3.2.3

Planung: In der Planungsphase wird der Umfang des Reviews festgelegt, der den
Zweck, das zu Uberprifende Arbeitsergebnis, die zu bewertenden Qualitatsmerkmale,
die zu berlcksichtigenden Bereiche, die Endekriterien, unterstiitzende Informationen
wie Normen, den Aufwand und den Zeitrahmen fiir das Review umfasst.

Reviewbeginn: Wahrend des Reviewbeginns geht es darum, sicherzustellen, dass
jeder Beteiligte und alles, was bendtigt wird, vorbereitet ist, um mit dem Review zu
starten. Dazu gehort auch, dass jeder Teilnehmer Zugang zu dem zu prifenden
Arbeitsergebnis hat, seine Rolle und Verantwortlichkeiten versteht und alles erhalt, was
er fur die Durchfihrung des Reviews bendétigt.

Individuelles Review: Jeder Gutachter fuhrt ein individuelles Review durch, um die
Qualitat des zu priufenden Arbeitsergebnisses zu bewerten und Anomalien,
Empfehlungen und Fragen zu identifizieren, indem er ein oder mehrere
Reviewverfahren anwendet (z. B. checklistenbasiertes Review, szenariobasiertes
Review). Die Norm ISO/IEC 20246 geht naher auf die verschiedenen Reviewverfahren
ein. Die Gutachter protokollieren alle von ihnen identifizierten Anomalien,
Empfehlungen und Fragen.

Kommunikation und Analyse: Da es sich bei den wahrend eines Reviews
festgestellten Anomalien nicht unbedingt um Fehlerzustdnde handelt, mussen alle
Anomalien analysiert und diskutiert werden. Fur jede Anomalie sollte eine Entschei-
dung Uber ihren Status, ihre Verantwortlichkeit und die erforderlichen Mallnahmen
getroffen werden. Dies geschieht in der Regel in einer Reviewsitzung, in der die Teil-
nehmer auch Uber die Qualitat des gepruften Arbeitsergebnisses und Uber die erfor-
derlichen FolgemaflRnahmen entscheiden. Nach Abschluss der Malkhahmen kann ein
Folgereview erforderlich sein.

Behebung und Berichterstattung: Fir jeden Fehlerzustand sollte ein Fehlerbericht
erstellt werden, damit die KorrekturmalRnahmen nachverfolgt werden kdnnen. Wenn
die Endekriterien erreicht sind, kann das Arbeitsergebnis abgenommen werden. Uber
die Ergebnisse des Reviews wird berichtet.

Rollen und Verantwortlichkeiten bei Reviews

An Reviews sind verschiedene Stakeholder beteiligt, die mehrere Rollen einnehmen kénnen.
Die wichtigsten Rollen und ihre Verantwortlichkeiten sind:

Manager — entscheidet, was gepruft werden soll, und stellt Ressourcen wie Personal
und Zeit flr das Review zur Verfligung.

Autor - erstellt und korrigiert das zu prifende Arbeitsergebnis.

Version 4.0.2 Seite 41 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

¢ Moderator (auch Facilitator genannt) — sorgt fir einen effektiven Ablauf der Reviewsit-
zungen, einschlieRlich Mediation, Zeitmanagement und einer geschutzten
Reviewumgebung, in der jeder frei sprechen kann.

¢ Protokollant — sammelt Anomalien von Gutachtern und zeichnet Reviewinformationen
auf, z. B. Entscheidungen und neue Anomalien, die wahrend der Reviewsitzung
gefunden werden.

e Gutachter - fuhrt Reviews durch. Ein Gutachter (auch Reviewer genannt) kann ein
Projektmitarbeiter, ein Fachexperte oder ein anderer Stakeholder sein.

¢ Reviewleiter — Ubernimmt die Gesamtverantwortung fir das Review, z. B. die
Entscheidung, wer daran teilnimmt, und die Organisation, wann und wo das Review
stattfindet.

Andere, detailliertere Rollen sind mdglich, wie in der Norm ISO/IEC 20246 beschrieben.

3.2.4 Arten von Reviews

Es gibt viele Arten von Reviews, die von informellen Reviews bis zu formalen Reviews reichen.
Der erforderliche Grad an Formalitdt hangt von Faktoren wie dem angewandten SDLC, der
Reife des Entwicklungsprozesses, der Kritikalitdt und Komplexitdt des zu prifenden
Arbeitsergebnisses, gesetzlichen oder regulatorischen Anforderungen und dem Bedarf an
einem Prifnachweis ab. Ein und dasselbe Arbeitsergebnis kann mit verschiedenen
Reviewarten geprift werden, z. B. zunachst mit einem informellen und spater mit einem
formaleren Review.

Die Auswahl der richtigen Reviewart ist der Schlissel zum Erreichen der geforderten
Reviewziele (siehe Abschnitt 3.2.5). Die Auswahl richtet sich nicht nur nach den Zielen,
sondern auch nach Faktoren wie dem Projektbedarf, den verfligbaren Ressourcen, der Art des
Arbeitsergebnisses und seinen Risiken, dem Unternehmensbereich und der
Unternehmenskultur.

Einige haufig verwendete Arten von Reviews sind:

¢ Informelles Review: Ein informelles Review folgt keinem definierten Prozess und
erfordert keine formalen, dokumentierten Ergebnisse. Das Hauptziel ist die Aufdeckung
von Anomalien.

¢ Walkthrough: Ein Walkthrough, das vom Autor geleitet wird, kann vielen Zielen
dienen, z. B. der Bewertung der Qualitdt und dem Aufbau von Vertrauen in das
Arbeitsergebnis, der Schulung von Gutachtern, der Erzielung eines Konsenses, der
Generierung neuer Ideen, der Motivation und Befahigung von Autoren zur
Verbesserung und der Aufdeckung von Anomalien. Gutachter kénnen vor dem
Walkthrough ein individuelles Review durchfiihren, dies ist jedoch nicht verpflichtend.

e Technisches Review: Ein Technisches Review wird von technisch qualifizierten
Gutachtern durchgefihrt und von einem Moderator geleitet. Die Ziele eines
Technischen Reviews sind das Erreichen eines Konsenses und die
Entscheidungsfindung in Bezug auf ein technisches Problem, aber auch die
Aufdeckung von Anomalien, die Bewertung der Qualitat und der Aufbau von Vertrauen

Version 4.0.2 Seite 42 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

in das Arbeitsergebnis, die Entwicklung neuer ldeen sowie die Motivation und
Befahigung der Autoren zur Verbesserung.

Inspektion: Da die Inspektion die formalste Art der Reviews ist, folgt sie dem
vollstdndigen allgemeinen Prozess (siehe Abschnitt 3.2.2). Das Hauptziel besteht
darin, die maximale Anzahl von Anomalien zu finden. Weitere Ziele sind die Bewertung
der Qualitat, der Aufbau von Vertrauen in das Arbeitsergebnis und die Motivation und
Befahigung der Autoren zur Verbesserung. Es werden Metriken gesammelt und zur
Verbesserung des SDLC, einschlieBlich des Inspektionsprozesses, verwendet. Bei
Inspektionen kann der Autor nicht als Reviewleiter oder Protokollant agieren.

3.2.5 Erfolgsfaktoren fur Reviews

Es gibt mehrere Faktoren, die den Erfolg von Reviews bestimmen, dazu gehdéren unter
anderem:

Die Festlegung klarer Ziele und messbarer Endekriterien. Die Bewertung der
Teilnehmer sollte niemals ein Ziel sein

Auswahl der geeigneten Reviewart, um die vorgegebenen Ziele zu erreichen und um
der Art des Arbeitsergebnisses, den Reviewteilnehmern, den Projektanforderungen
und dem Kontext gerecht zu werden

Durchfihrung von Reviews in kleinen Einheiten, damit die Gutachter wahrend eines
individuellen Reviews und/oder der Reviewsitzung (sofern diese stattfindet) nicht die
Konzentration verlieren

Lieferung von Feedback aus Reviews an die Stakeholder und Autoren, damit diese das
Produkt und ihre Aktivitdten verbessern kdnnen (siehe Abschnitt 3.2.1)

Bereitstellung von ausreichend Zeit fir die Teilnehmer zur Vorbereitung auf das
Review

Unterstutzung des Reviewprozesses durch das Management

Einbeziehung der Reviews in die Unternehmenskultur, um Lernen und
Prozessverbesserung zu férdern

Angebot geeigneter Schulungen fiur alle Teilnehmer, damit sie wissen, wie sie ihre
Rolle erflllen kdnnen

Moderation der Sitzungen

Version 4.0.2 Seite 43 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

4. Testanalyse und -entwurf — 390 Minuten

Schliisselbegriffe

Abnahmetestgetriebene Entwicklung, = Akzeptanzkriterien, = Anweisungsuberdeckung,
Aquivalenzklassenbildung, auf Zusammenarbeit basierender Testansatz, Black-Box-
Testverfahren, checklistenbasierter Test, Entscheidungstabellentest, erfahrungsbasiertes
Testverfahren, explorativer Test, Grenzwertanalyse, intuitive Testfallermittlung, Testverfahren,
Uberdeckung, Uberdeckungselement, White-Box-Testverfahren, Zustandsiibergangstest,
ZweigUberdeckung

Lernziele fiir Kapitel 4: Der Lernende kann ...
41 Testverfahren im Uberblick

FL-4.1.1 (K2) ... Black-Box-Testverfahren, White-Box-Testverfahren und erfahrungsbasierte
Testverfahren unterscheiden

4.2 Black-Box-Testverfahren

FL-4.2.1 (K3) ... die Aquivalenzklassenbildung zur Ableitung von Testfallen anwenden
FL-4.2.2 (K3
FL-4.2.3 (K3
FL-4.2.4 (K3

) -
) ... die Grenzwertanalyse zur Ableitung von Testfallen anwenden

) ... den Entscheidungstabellentest zur Ableitung von Testfallen anwenden
) ... den Zustandsubergangstest zur Ableitung von Testfallen anwenden
4.3 White-Box-Testverfahren

FL-4.3.1 (K2) ... den Anweisungstest erklaren
FL-4.3.2 (K2) ... den Zweigtest erklaren
FL-4.3.3 (K2) ... den Wert des White-Box-Tests erklaren

4.4 Erfahrungsbasierte Testverfahren

FL-4.4.1 (K2) ... die intuitive Testfallermittiung erklaren
FL-4.4.2 (K2) ... den explorativen Test erklaren
FL-4.4.3 (K2) ... den checklistenbasierten Test erklaren

4.5 Auf Zusammenarbeit basierende Testanséitze

FL-4.5.1 (K2) ... das Schreiben von User-Storys in Zusammenarbeit mit Entwicklern und
Fachvertretern erklaren

FL-4.5.2 (K2) ... die verschiedenen Mdglichkeiten zum Schreiben von Akzeptanzkriterien
einordnen

FL-4.5.3 (K3) ... die abnahmetestgetriebene Entwicklung (ATDD) zur Ableitung von
Testfallen anwenden

Version 4.0.2 Seite 44 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

4.1 Testverfahren im Uberblick

Testverfahren unterstiitzen den Tester bei der Testanalyse (was soll getestet werden) und
beim Testentwurf (wie soll getestet werden). Testverfahren helfen dabei, eine relativ kleine,
aber ausreichende Menge von Testfallen systematisch zu entwickeln. Testverfahren helfen
dem Tester auch bei der Definition von Testbedingungen, der Identifizierung von
Uberdeckungselementen und der Identifizierung von Testdaten wahrend der Testanalyse und
des Testentwurfs. Weitere Informationen zu Testverfahren finden sich in der Norm
ISO/IEC/IEEE 29119-4 sowie in (Beizer 1990, Craig 2002, Copeland 2004, Koomen 2006,
Jorgensen 2014, Ammann 2016, Forgacs 2019).

In diesem Lehrplan werden Testverfahren als Black-Box-, White-Box- und erfahrungsbasiert
klassifiziert.

Black-Box-Testverfahren (auch spezifikationsbasierte Verfahren genannt) basieren auf einer
Analyse des spezifizierten Verhaltens des Testobjekts ohne Kenntnis der internen Struktur.
Daher werden die Testfalle unabhangig von der Implementierung der Software erstellt. Folglich
sind die Testfalle auch dann noch nutzlich, wenn sich die Implementierung andert, das
geforderte Verhalten aber gleich bleibt.

White-Box-Testverfahren (auch als strukturbasierte Verfahren bekannt) basieren auf einer
Analyse der internen Struktur und Verarbeitung des Testobjekts. Da die Testfalle vom Entwurf
der Software abhangig sind, kdnnen sie erst nach dem Entwurf oder der Implementierung des
Testobjekts erstellt werden.

Erfahrungsbasierte Testverfahren nutzen das Wissen und die Erfahrung von Testern
effektiv fur den Entwurf und die Implementierung von Testfallen. Die Effektivitat dieser
Testverfahren hangt stark von den Kenntnissen des Testers ab. Mit erfahrungsbasierten
Testverfahren kénnen Fehlerzustande aufgedeckt werden, die bei Black-Box-Testverfahren
und White-Box-Testverfahren mdglicherweise Ubersehen werden. Daher erganzen
erfahrungsbasierte Testverfahren Black-Box-Testverfahren und White-Box-Testverfahren.

4.2 Black-Box-Testverfahren

Die folgenden Abschnitte behandeln die Ublichen Black-Box-Testverfahren:

e Aquivalenzklassenbildung
e Grenzwertanalyse
o Entscheidungstabellentest

e ZustandslUbergangstest

4.2.1 Aquivalenzklassenbildung

Bei der Aquivalenzklassenbildung werden Daten in Klassen (so genannte Aquivalenzklassen)
unterteilt, wobei davon ausgegangen wird, dass alle Elemente einer bestimmten Klasse vom
Testobjekt auf die gleiche Weise verarbeitet werden. Die Theorie hinter diesem Verfahren ist,

Version 4.0.2 Seite 45 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

dass, wenn ein Testfall, der einen Wert aus einer Aquivalenzklasse testet, einen Fehlerzustand
entdeckt, dieser Fehlerzustand auch von Testfallen entdeckt worden ware, die einen
beliebigen anderen Wert aus derselben Klasse testen. Daher reicht ein Test je Klasse aus.

Aquivalenzklassen konnen fiir jedes dem Testobjekt zugehérige Datenelement ermittelt
werden, einschlieBlich Eingaben, Ausgaben, Konfigurationselementen, internen Werten,
zeitbezogenen Werten und Schnittstellenparametern. Die Klassen kdnnen
zusammenhangend oder einzeln, geordnet oder ungeordnet, endlich oder unendlich sein. Die
Klassen durfen sich nicht Uberschneiden und missen nicht-leere Mengen sein.

Bei einfachen Testelementen kann die Aquivalenzklassenbildung leicht sein, aber in der Praxis
ist es oft kompliziert zu verstehen, wie das Testobjekt verschiedene Werte verarbeitet. Daher
sollte die Klassenbildung mit Sorgfalt vorgenommen werden.

Eine Klasse, die gultige Werte enthalt, wird als gultige Klasse bezeichnet. Eine Klasse, die
unglltige Werte enthalt, wird als unglltige Klasse bezeichnet. Die Definitionen von gultigen
und ungultigen Werten kénnen je nach Team und Unternehmen variieren. So koénnen
beispielsweise gultige Werte als solche interpretiert werden, die vom Testobjekt verarbeitet
werden sollten, oder als solche, fur die die Spezifikation ihre Verarbeitung definiert. Unguiltige
Werte konnen als solche interpretiert werden, die vom Testobjekt ignoriert oder
zurlickgewiesen werden sollen, oder als solche, fir die in der Spezifikation des Testobjekts
keine Verarbeitung festgelegt ist.

In der Aquivalenzklassenbildung sind die Aquivalenzklassen die Uberdeckungselemente. Um
mit diesem Testverfahren eine 100%ige Uberdeckung zu erreichen, missen die Testfélle alle
identifizierten Klassen (einschlief3lich unglltiger Klassen) mindestens einmal ausfihren. Die
Uberdeckung wird gemessen als die Anzahl der Klassen, die von mindestens einem Testfall
ausgefuhrt wurden, geteilt durch die Gesamtzahl der identifizierten Klassen, und wird in
Prozent ausgedrickt.

Viele Testelemente umfassen mehrere Gruppen von Klassen (z. B. Testelemente mit mehr als
einem Eingabeparameter), was bedeutet, dass ein Testfall Klassen aus verschiedenen
Gruppen von Klassen abdeckt. Das einfachste Uberdeckungskriterium fiir den Fall mehrerer
Klassensétze ist die Each-Choice-Uberdeckung (Ammann 2016). Diese verlangt, dass jede
Klasse aus jeder Gruppe von Klassen durch Testfalle mindestens einmal ausgefiuhrt wird. Die
Each-Choice-Uberdeckung beriicksichtigt keine gezielten Kombinationen von Klassen.
Ungiiltige Aquivalenzklassen sollten nicht gemeinsam in einem Testfall getestet werden, um
Fehlermaskierung zu vermeiden, d. h. eine Situation, in der ein Fehlerzustand die Entdeckung
eines anderen verhindert.

4.2.2 Grenzwertanalyse

Die Grenzwertanalyse ist ein Testverfahren, das auf der Uberprifung der Grenzen von
Aquivalenzklassen basiert. Daher kann die Grenzwertanalyse nur fiir geordnete Klassen
verwendet werden. Die Minimum- und Maximumwerte einer Klasse sind ihre Grenzwerte.
Wenn zwei Elemente zur gleichen Klasse gehoren, missen bei der Grenzwertanalyse alle
Elemente zwischen ihnen ebenfalls zu dieser Klasse gehdren.

Version 4.0.2 Seite 46 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Die Grenzwertanalyse konzentriert sich auf die Grenzwerte der Klassen, weil Entwicklern bei
diesen Grenzwerten eher Fehlhandlungen unterlaufen. Typische Fehlerzustande, die durch
die Grenzwertanalyse gefunden werden, liegen dort, wo implementierte Grenzen an
Positionen oberhalb oder unterhalb ihrer beabsichtigten Positionen verschoben oder ganz
ausgelassen werden.

In diesem Lehrplan werden zwei Versionen der Grenzwertanalyse behandelt: 2-Wert-
Grenzwertanalyse und 3-Wert-Grenzwertanalyse. Sie unterscheiden sich in der Anzahl der
Uberdeckungselemente pro Grenzwert, die ausgefiihrt werden miissen, um eine 100%ige
Uberdeckung zu erreichen.

Bei der 2-Wert-Grenzwertanalyse (Craig 2002, Myers 2011) gibt es fir jeden Grenzwert zwei
Uberdeckungselemente: den Grenzwert und seinen engsten Nachbarn, der zur angrenzenden
Klasse gehort. Um bei der 2-Wert-Grenzwertanalyse eine 100%ige Uberdeckung zu erreichen,
missen die Testfille alle Uberdeckungselemente, d. h. alle identifizierten Grenzwerte,
ausfiihren. Die Uberdeckung wird gemessen als die Anzahl der ausgefiihrten Grenzwerte,
geteilt durch die Gesamtzahl der identifizierten Grenzwerte, und wird in Prozent ausgedruckt.

In der 3-Wert-Grenzwertanalyse (Koomen 2006, O'Regan 2019) gibt es fur jeden Grenzwert
drei Uberdeckungselemente: den Grenzwert und seine beiden Nachbarn. Daher kénnen bei
der 3-Wert-Grenzwertanalyse einige der Uberdeckungselemente keine Grenzwerte sein. Um
bei der 3-Wert-Grenzwertanalyse eine 100%ige Uberdeckung zu erreichen, miissen die
Testfalle alle Uberdeckungselemente, d. h. die identifizierten Grenzwerte und deren Nachbarn,
ausfiihren. Die Uberdeckung wird gemessen als die Anzahl der ausgefiihrten Grenzwerte und
ihrer Nachbarn, geteilt durch die Gesamtzahl der identifizierten Grenzwerte und ihrer
Nachbarn, und wird in Prozent ausgedruckt.

Die 3-Wert-Grenzwertanalyse ist strenger als die 2-Wert-Grenzwertanalyse, da sie
Fehlerzustande aufdecken kann, die bei der 2-Wert-Grenzwertanalyse Ubersehen wurden.
Wenn beispielsweise die Entscheidung "wenn (x < 10) ..." falschlicherweise als "wenn (x = 10)
..." implementiert wird, kann keiner der aus der 2-Wert-Grenzwertanalyse abgeleiteten
Testdaten (x = 10, x = 11) den Fehlerzustand aufdecken. Mit x = 9, abgeleitet aus der 3-Wert-
Grenzwertanalyse, wird der Fehlerzustand jedoch mit hoher Wahrscheinlichkeit entdeckt.

4.2.3 Entscheidungstabellentest

Entscheidungstabellen werden zum Testen der Umsetzung von Anforderungen verwendet, die
angeben, wie verschiedene Kombinationen von Bedingungen zu unterschiedlichen
Ergebnissen fuhren. Entscheidungstabellen sind ein effektives Mittel zur Erfassung komplexer
Logik, wie z. B. Geschéftsregeln.

Bei der Erstellung von Entscheidungstabellen werden die Bedingungen und die daraus
resultierenden Aktionen des Systems definiert. Diese bilden die Zeilen der Tabelle. Jede
Spalte entspricht einer Entscheidungsregel, die eine eindeutige Kombination von
Bedingungen zusammen mit den zugehdrigen Aktionen definiert. In Entscheidungstabellen mit
eingeschrankter Eingabe werden alle Werte der Bedingungen und Aktionen (mit Ausnahme
der irrelevanten oder undurchfuhrbaren, siehe unten) als boolesche Werte (wahr oder falsch)
dargestellt. Alternativ kdnnen in Entscheidungstabellen mit erweiterter Eingabe einige oder

Version 4.0.2 Seite 47 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

alle Bedingungen und Aktionen auch mehrere Werte annehmen (z. B. Zahlenbereiche,
Aquivalenzklassen, Einzelwerte).

Die Notation fur Bedingungen ist wie folgt: "J" (wahr) bedeutet, dass die Bedingung erfllt ist.
"N" (falsch) bedeutet, dass die Bedingung nicht erfillt ist. "-" bedeutet, dass der Wert der
Bedingung fir das Ergebnis der Aktion irrelevant ist. "N/A" bedeutet, dass die Bedingung fur
eine bestimmte Regel nicht durchfiihrbar ist. Fir Aktionen: "X" bedeutet, dass die Aktion
stattfinden sollte. Leer bedeutet, dass die Aktion nicht eintreten sollte. Es kénnen auch andere
Notationen verwendet werden.

Eine vollstdndige Entscheidungstabelle hat genligend Spalten, um jede Kombination von
Bedingungen abzudecken. Die Tabelle kann vereinfacht werden, indem Spalten mit
undurchfihrbaren Kombinationen von Bedingungen geldscht werden. Die Tabelle kann auch
minimiert werden, indem Spalten, in denen einige Bedingungen keinen Einfluss auf das
Ergebnis haben, in einer einzigen Spalte zusammengefasst werden. Algorithmen zur
Minimierung von Entscheidungstabellen sind nicht Gegenstand dieses Lehrplans.

Beim Entscheidungstabellentest sind die Uberdeckungselemente die Spalten, die ausfiihrbare
Kombinationen von Bedingungen enthalten. Um mit diesem Verfahren eine 100%ige
Uberdeckung zu erreichen, miissen die Testfille alle diese Spalten ausfiihren. Die
Uberdeckung wird gemessen als die Anzahl der ausgefilhrten Spalten, geteilt durch die
Gesamtzahl der ausfiihrbaren Spalten, und wird in Prozent ausgedrickt.

Die Starke des Entscheidungstabellentests liegt darin, dass er einen systematischen Ansatz
zur Identifizierung aller Kombinationen von Bedingungen bietet, von denen einige andernfalls
ubersehen werden kénnten. Er hilft auch, Licken oder Widerspriiche in den Anforderungen zu
finden. Wenn es viele Bedingungen gibt, kann die Anwendung aller Entscheidungsregeln sehr
zeitaufwendig sein, da die Anzahl der Regeln exponentiell mit der Anzahl der Bedingungen
wachst. In einem solchen Fall kann eine minimierte Entscheidungstabelle oder ein
risikobasierter Ansatz verwendet werden, um die Anzahl der auszufiihrenden Regeln zu
reduzieren.

4.2.4 Zustandsubergangstest

Ein Zustandsdiagramm modelliert das Verhalten eines Systems, indem es seine mdglichen
Zustande und giiltigen Ubergénge aufzeigt. Ein Ubergang wird durch ein Ereignis ausgeldst,
das zusatzlich durch eine Wéachterbedingung (engl. guard condition) qualifiziert werden kann.
Es wird davon ausgegangen, dass die Ubergénge augenblicklich erfolgen und manchmal dazu
fuhren, dass die Software eine Aktion ausfihrt. Die Ubliche Syntax zur Kennzeichnung von
Ubergéngen lautet wie folgt: "Ereignis [Wachterbedingung] / Aktion". Wachterbedingungen
und Aktionen kdnnen weggelassen werden, wenn sie nicht existieren oder fur den Tester
irrelevant sind.

Eine Zustandstabelle ist ein Modell, das einem Zustandsdiagramm entspricht. |hre Zeilen
stellen Zustande dar, ihre Spalten Ereignisse (zusammen mit Wachterbedingungen, falls
vorhanden). Die Tabelleneintrage (Zellen) stellen Ubergdnge dar und enthalten den
Zielzustand sowie die daraus resultierenden Aktionen, falls definiert. Im Gegensatz zum
Zustandsdiagramm zeigt die Zustandstabelle explizit ungliltige Ubergange an, die durch leere
Zellen dargestellt werden.

Version 4.0.2 Seite 48 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Ein Testfall, der auf einem Zustandsdiagramm oder einer Zustandstabelle basiert, wird in der
Regel als eine Folge von Ereignissen dargestellt, die zu einer Abfolge von
Zustandsanderungen (und ggf. Aktionen) fuhrt. Ein Testfall kann und wird Ublicherweise
mehrere Ubergange zwischen den Zustéanden abdecken.

Es gibt viele Uberdeckungskriterien fiir Zustandsiibergangstests. In diesem Lehrplan werden
drei von ihnen behandelt.

Bei der Uberdeckung aller Zustinde sind die Uberdeckungselemente die Zustéande. Um eine
100%ige Uberdeckung aller Zustande zu erreichen, miissen die Testfélle sicherstellen, dass
alle Zustande ausgefiihrt werden. Die Uberdeckung wird als Anzahl der ausgefiihrten
Zustande, geteilt durch die Gesamtzahl der Zustande, gemessen und in Prozent ausgedrickt.

Bei der Uberdeckung der giiltigen Uberginge (auch 0-Switch-Uberdeckung genannt)
handelt es sich bei den Uberdeckungselementen um einzelne giiltige Ubergénge. Um eine
100%ige Uberdeckung der gultigen Ubergange zu erreichen, miissen die Testfalle alle gliltigen
Ubergange ausfihren. Die Uberdeckung wird als Anzahl der ausgefiihrten giiltigen
Ubergange, geteilt durch die Gesamtzahl der giiltigen Ubergénge, gemessen und in Prozent
ausgedrickt.

Bei der Uberdeckung aller Ubergéange handelt es sich bei den Uberdeckungselementen um
alle Ubergange, die in einer Zustandstabelle aufgefiihrt sind. Um eine 100%ige Uberdeckung
aller Ubergange zu erreichen, miissen die Testfalle alle glltigen Ubergange ausfiihren und
versuchen, ungiiltige Ubergange auszufiihren. Das Testen von nur einem ungiiltigen
Ubergang in einem einzigen Testfall hilft dabei, Fehlermaskierung zu vermeiden, d. h. eine
Situation, in der ein Fehlerzustand die Entdeckung eines anderen verhindert. Die Uberdeckung
wird als Anzahl der giiltigen und ungiiltigen Ubergénge, die durch die Testfalle ausgefiihrt oder
auszufuhren versucht wurden, geteilt durch die Gesamtzahl der glltigen und ungultigen
Ubergange, gemessen und in Prozent ausgedriickt.

Die Uberdeckung aller Zusténde ist schwécher als die Uberdeckung aller giiltigen Ubergénge,
da sie in der Regel erreicht werden kann, ohne alle Ubergénge auszufiihren. Die Uberdeckung
der giltigen Ubergange ist das am haufigsten verwendete Uberdeckungskriterium. Eine
vollstéandige Uberdeckung aller giiltigen Ubergénge garantiert eine vollstéandige Uberdeckung
aller Zustande. Das Erreichen der vollstandigen Uberdeckung aller Ubergange garantiert
sowohl die vollstandige Uberdeckung aller Zustande als auch die vollstéandige Uberdeckung
der giiltigen Ubergange und sollte eine Mindestanforderung fiir unternehmenskritische und
sicherheitskritische Software sein.

4.3 White-Box-Testverfahren

Aufgrund ihrer Verbreitung und Einfachheit konzentriert sich dieser Abschnitt auf zwei
codebezogene White-Box-Testverfahren:

e Anweisungstest

e Zweigtest

Version 4.0.2 Seite 49 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Es gibt grundlichere White-Box-Testverfahren, die in einigen sicherheitskritischen,
unternehmenskritischen oder hochgradig integrierten Umgebungen eingesetzt werden, um
eine grundlichere Codeliberdeckung zu erreichen. Es gibt auch White-Box-Testverfahren, die
in hoheren Teststufen eingesetzt werden (z. B. bei API-Test) oder die Uberdeckungen
verwenden, die sich nicht auf den Code beziehen (z. B. Neuronenlberdeckung beim Testen
von neuronalen Netzen). Diese Verfahren werden in diesem Lehrplan nicht behandelt.

4.3.1 Anweisungstest und Anweisungsuberdeckung

Beim Anweisungstest sind die Uberdeckungselemente ausfiihrbare Anweisungen. Ziel ist es,
Testfalle zu entwerfen, um die Anweisungen im Code auszuflihren, bis eine akzeptable
Anweisungsiiberdeckung erreicht ist. Die Uberdeckung wird als Anzahl der durch die Testfélle
ausgefuhrten Anweisungen, geteilt durch die Gesamtzahl der ausfliihrbaren Anweisungen im
Code, gemessen und in Prozent ausgedruckt.

Wenn eine Anweisungsiberdeckung von 100 % erreicht wird, ist sichergestellt, dass alle
ausfuhrbaren Anweisungen im Code mindestens einmal ausgefuhrt worden sind. Dies
bedeutet insbesondere, dass jede Anweisung mit einem Fehlerzustand ausgefihrt wird, was
zu einer Fehlerwirkung fihren kann, die das Vorhandensein des Fehlerzustands beweist. Das
Ausfihren einer Anweisung mit einem Testfall wird jedoch nicht in allen Fallen Fehlerzustande
aufdecken. So werden beispielsweise Fehlerzustande, die datenabhangig sind, nicht erkannt
(z. B. eine Division durch null, die nur fehlschlagt, wenn der Nenner auf null gesetzt wird). Auch
eine 100%ige Anweisungsliberdeckung stellt nicht sicher, dass die gesamte Entscheidungs-
logik getestet wurde, da z. B. nicht alle Verzweigungen (siehe Abschnitt 4.3.2) des Codes
ausgefihrt werden kénnen.

4.3.2 Zweigtest und Zweiguberdeckung

Ein Zweig ist ein Kontrollibergang zwischen zwei Knoten im Kontrollflussgraph, der die
moglichen Sequenzen aufzeigt, in denen Quellcodeanweisungen im Testobjekt ausgefuhrt
werden. Jeder Kontrolliibergang kann entweder bedingungslos (d. h. geradliniger Code) oder
bedingt (d. h. ein Entscheidungsergebnis) sein.

Beim Zweigtest sind die Uberdeckungselemente Zweige, und das Ziel ist es, Testfalle zu
entwerfen, um die Zweige im Code auszufilhren, bis ein akzeptabler Uberdeckungsgrad
erreicht ist. Die Messgrofie der Zweiguberdeckung erfolgt als Anzahl der durch die Testfalle
ausgefuhrten Zweige, geteilt durch die Gesamtzahl der Zweige, und wird in Prozent
ausgedrickt.

Wenn eine 100%ige Zweiguberdeckung erreicht ist, werden alle Zweige des Codes,
unbedingte und bedingte, durch Testfalle ausgefuhrt. Bedingte Verzweigungen entsprechen
typischerweise einem wahren oder falschen Ergebnis einer "if...then"-Entscheidung, einem
Ergebnis einer switch/case-Anweisung oder einer Entscheidung Uber den Austritt oder die
Fortsetzung einer Schleife. Das Ausflihren eines Zweigs mit einem Testfall wird jedoch nicht
in allen Fallen Fehlerzustande aufdecken. So werden beispielsweise Fehlerzustande, die die
Ausfiihrung eines bestimmten Pfades in einem Code erfordern, nicht erkannt.

Version 4.0.2 Seite 50 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Zweiguberdeckung schliel3t Anweisungstberdeckung ein. Das bedeutet, dass jeder Satz von
Testfallen, der eine 100%ige Zweiguberdeckung erreicht, auch eine 100%ige
Anweisungsuberdeckung erreicht (aber nicht umgekehrt).

4.3.3 Der Wert des White-Box-Tests

Eine grundlegende Starke, die allen White-Box-Testverfahren gemeinsam ist, besteht darin,
dass beim Testen die gesamte Softwareimplementierung berlcksichtigt wird, was die
Erkennung von Fehlerzustadnden auch dann erleichtert, wenn die Softwarespezifikation vage,
veraltet oder unvollstandig ist. Ein entsprechender Schwachpunkt besteht darin, dass White-
Box-Tests, wenn die Software eine oder mehrere Anforderungen nicht erflllt, die daraus
resultierenden Fehlerzustande moglicherweise nicht erkennen (Watson 1996).

White-Box-Testverfahren kdnnen beim statischen Testen eingesetzt werden (z. B. bei Dry
Runs (Probelaufen) von Code). Sie eignen sich gut fir das Review von Code, der noch nicht
ausflihrbar ist (Hetzel 1988), sowie von Pseudocode und anderer High-Level- oder Top-down-
Logik, die mit einem Kontrollflussgraph modelliert werden kann.

Die Durchfuhrung von Black-Box-Tests allein liefert keine MessgroRe der tatsachlichen
Codelberdeckung. White-Box-Tests bieten eine objektive Messgroke der Uberdeckung und
die notwendigen Informationen, um zuséatzliche Tests zu generieren, die die Uberdeckung
erhéhen und somit das Vertrauen in den Code starken.

4.4 Erfahrungsbasierte Testverfahren

Ubliche erfahrungsbasierte Testverfahren werden in den folgenden Abschnitten besprochen:

¢ Intuitive Testfallermittiung
o Explorativer Test

e Checklistenbasierter Test

4.4.1 Intuitive Testfallermittiung

Die intuitive Testfallermittlung ist ein Testverfahren zur Vorhersage des Auftretens von
Fehlhandlungen, Fehlerzustdnden und Fehlerwirkungen, das auf dem Wissen des Testers
basiert, dazu gehoren:

e Wie die Anwendung in der Vergangenheit funktioniert hat.

e Die Arten von Fehlhandlungen, zu denen die Entwickler neigen, und die Arten von
Fehlerzustanden, die aus diesen Fehlhandlungen resultieren.

¢ Die Arten von Fehlerwirkungen, die in anderen, ahnlichen Anwendungen aufgetreten
sind.

Im Allgemeinen koénnen sich Fehlhandlungen, Fehlerzustdnde und Fehlerwirkungen auf
Folgendes beziehen: Eingabe (z. B. korrekte Eingabe nicht akzeptiert, falsche oder fehlende
Parameter), Ausgabe (z. B. falsches Format, falsches Ergebnis), Logik (z. B. fehlende Falle,

Version 4.0.2 Seite 51 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

falscher Operator), Berechnung (z. B. falscher Operand, falsche Berechnung), Schnittstellen
(z. B. falsche Parameterzuordnung, inkompatible Typen) oder Daten (z. B. falsche
Initialisierung, falscher Typ).

Fehlerangriffe sind eine Mdoglichkeit der intuitiven Testfallermittiungen. Bei diesem
Testverfahren muss der Tester eine Liste moglicher Fehlhandlungen, Fehlerzustande und
Fehlerwirkungen erstellen oder Ubernehmen und Tests entwerfen, die die mit den
Fehlhandlungen verbundenen Fehlerzustande identifizieren, die Fehlerzustande aufdecken
oder die Fehlerwirkungen verursachen. Diese Listen kdnnen auf der Grundlage von Er-
fahrungswerten, Daten Uber Fehlerzustande und Fehlerwirkungen oder auf der Grundlage des
allgemeinen Wissens darlber, warum Software fehlschlagt, erstellt werden.

Siehe (Whittaker 2002, Whittaker 2003, Andrews 2006) fur weitere Informationen tber intuitive
Testfallermittlungen und Fehlerangriffe.

4.4.2 Explorativer Test

Beim explorativen Test werden Tests gleichzeitig entworfen, ausgefihrt und bewertet,
wahrend der Tester mehr Giber das Testobjekt erfahrt. Neben dem genauen Kennenlernen des
Testobjekts wird das Testobjekt mit gezielten Tests griindlicher erforscht und weitere Tests fur
ungetestete Bereiche erstellt.

Exploratives Testen wird manchmal als sitzungsbasierter Test durchgefiihrt, um das Testen
zu strukturieren. Bei einem sitzungsbasierten Ansatz wird der explorative Test innerhalb eines
bestimmten Zeitrahmens durchgefiihrt. Der Tester verwendet eine Test-Charta mit Testzielen,
um das Testen zu steuern. An die Testsitzung schlieRt sich in der Regel eine
Nachbesprechung an, in der der Tester mit den an den Testergebnissen interessierten
Beteiligten diskutiert. Bei dieser Testvorgehensweise kdnnen abstrakte Testbedingungen als
Testziele behandelt werden. Uberdeckungselemente werden wéahrend der Testsitzung
identifiziert und ausgefihrt. Der Tester kann Testsitzungsblatter (engl. session sheets)
verwenden, um die durchgefiihrten Schritte und die gemachten Erkenntnisse zu
dokumentieren.

Explorative Tests sind sinnvoll, wenn es nur wenige oder unzureichende Spezifikationen gibt
oder der Zeitdruck beim Testen groR ist. Explorative Tests sind auch als Erganzung zu ande-
ren, eher formalen Testverfahren sinnvoll. Exploratives Testen ist effektiver, wenn der Tester
erfahren ist, Uber Fachkenntnisse verfligt und ein hohes Mal an grundlegenden Kompetenzen
wie analytische Fahigkeiten, Neugier und Kreativitat besitzt (siehe Abschnitt 1.5.1).

Beim explorativen Test kdnnen auch andere Testverfahren zum Einsatz kommen (z. B.
Aquivalenzklassenbildung). Weitere Informationen zum explorativen Testen finden sich in
(Kaner 1999, Whittaker 2009, Hendrickson 2013).

4.4.3 Checklistenbasierter Test

Beim checklistenbasierten Test entwirft, implementiert und fihrt ein Tester Tests aus, um
Testbedingungen aus einer Checkliste abzudecken. Checklisten kénnen auf der Grundlage
von Erfahrungen, auf dem Wissen dariber, was fir den Benutzer wichtig ist, oder einem
Verstandnis dartber, warum und wie Software fehlgeschlagen ist, erstellt werden. Checklisten

Version 4.0.2 Seite 52 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

sollten keine Elemente enthalten, die automatisch geprift werden kénnen, Elemente, die sich
besser als Eingangskriterien oder Endekriterien eignen, oder Elemente, die zu allgemein sind
(Brykczynski 1999).

Die Elemente der Checkliste sind haufig in Form von Fragen formuliert. Es sollte mdglich sein,
jedes Element einzeln und direkt zu prifen. Diese Elemente kénnen sich auf Anforderungen,
Eigenschaften grafischer Benutzungsoberflachen, Qualitdtsmerkmale oder andere Formen
von Testbedingungen beziehen. Checklisten kdnnen zur Unterstitzung verschiedener
Testarten, einschlieRlich funktionaler und nicht-funktionaler Tests, erstellt werden (z. B. 10
Heuristiken flir Gebrauchstauglichkeitstests (Nielsen 1994)).

Einige Checklisteneintrage konnen im Laufe der Zeit an Effektivitat verlieren, weil die
Entwickler lernen, dieselben Fehlhandlungen zu vermeiden. Neue Eintrage mussen
moglicherweise auch hinzugefiigt werden, um neu gefundene Fehlerzustande mit hohem
Fehlerschweregrad zu berlcksichtigen. Daher sollten Checklisten regelmaRig auf der
Grundlage von Fehlerzustanden aktualisiert werden. Es sollte jedoch darauf geachtet werden,
dass die Checkliste nicht zu lang wird (Gawande 2009).

Beim Fehlen detaillierter Testfalle kann das checklistenbasierte Testen Richtlinien und ein
gewisses Mal} an Konsistenz fiir das Testen bieten. Wenn die Checklisten generisch sind, ist
eine gewisse Variabilitdt beim tatsdchlichen Testen wahrscheinlich, was zu einer potenziell
gréReren Uberdeckung, aber weniger Wiederholbarkeit fiihrt.

4.5 Auf Zusammenarbeit basierende Testansatze

Jedes der oben erwahnten Testverfahren (siehe Abschnitte 4.2, 4.3, 4.4) verfolgt ein
bestimmtes Ziel im Hinblick auf die Erkennung von Fehlerzustadnden. Auf Zusammenarbeit
basierende Ansatze hingegen konzentrieren sich auch auf die Vermeidung von
Fehlerzustanden durch Zusammenarbeit und Kommunikation.

4.5.1 Gemeinsames Schreiben von User-Storys

Eine User-Story reprasentiert ein Feature, das fir einen Benutzer oder Kaufer eines Systems
oder einer Software nltzlich sein wird. User-Storys haben drei kritische Aspekte (Jeffries
2000), die zusammen die "3 Cs" genannt werden:

e Karte (Card) — das Medium, das eine User-Story beschreibt (z. B. eine Karteikarte, ein
Eintrag auf einem elektronischen Board)

¢ Konversation (Conversation) — erklart, wie die Software genutzt werden soll (kann
dokumentiert oder mindlich erfolgen)

o Bestatigung (Confirmation) — die Akzeptanzkriterien (siehe Abschnitt 4.5.2)

Das gangigste Format fir eine User-Story ist "Als [Rolle] méchte ich, dass [das zu erreichende
Ziel], so dass ich [resultierender Nutzen fur die Rolle]", gefolgt von den Akzeptanzkriterien.

Fir die Zusammenarbeit bei der Erstellung der User-Story kdnnen Verfahren wie
Brainstorming und Mind-Mapping eingesetzt werden. Die Zusammenarbeit ermdglicht es dem

Version 4.0.2 Seite 53 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Team, eine gemeinsame Vision von dem zu erhalten, was geliefert werden soll, indem drei
Perspektiven berucksichtigt werden: Fachlichkeit, Entwicklung und Testen.

Gute User-Storys sollten sein: unabhangig (independent), verhandelbar (negotiable), nitzlich
(valuable), schatzbar (estimable), klein (small) und testbar (testable) (INVEST-Prinzip). Wenn
ein Stakeholder nicht weil3, wie er eine User-Story testen soll, kann dies darauf hindeuten,
dass die User-Story nicht klar genug ist, dass sie fur ihn keinen erkennbaren Mehrwert darstellt
oder dass der Stakeholder einfach Hilfe beim Testen bendtigt (Wake 2003).

4.5.2 Akzeptanzkriterien

Akzeptanzkriterien fur eine User-Story sind die Bedingungen, die eine Implementierung der
User-Story erfillen muss, um von den Stakeholdern akzeptiert zu werden. Aus dieser
Perspektive konnen Akzeptanzkriterien als die Testbedingungen betrachtet werden, die durch
die Tests ausgefuhrt werden sollten. Akzeptanzkriterien sind in der Regel ein Ergebnis der
Diskussion (siehe Abschnitt 4.5.1).

Akzeptanzkriterien werden verwendet, um

e den Umfang der User-Story zu definieren,

e einen Konsens zwischen den Stakeholdern zu erreichen,

e sowohl positive als auch negative Szenarien zu beschreiben,

e als Basis fur Abnahmetests der User-Story zu dienen (siehe Abschnitt 4.5.3) sowie

e eine genaue Planung und Schatzung zu ermdglichen.

Es gibt mehrere Mdglichkeiten, Akzeptanzkriterien fir eine User-Story zu formulieren. Die zwei
gangigsten Formate sind:

e Szenarioorientiert (z. B. das Gegeben/Wenn/Dann-Format, das in der
verhaltensgetriebenen Entwicklung (BDD) verwendet wird, siehe Abschnitt 2.1.3)

o Regelorientiert (z. B. Verifizierungsliste mit Aufzahlungspunkten oder tabellarische
Form der Input-Output-Zuordnung)

Die meisten Akzeptanzkriterien lassen sich in einem der beiden Formate dokumentieren. Das
Team kann jedoch auch ein anderes, benutzerdefiniertes Format verwenden, solange die
Akzeptanzkriterien klar definiert und eindeutig sind.

4.5.3 Abnahmetestgetriebene Entwicklung (ATDD)

ATDD ist ein Test-First-Ansatz (siehe Abschnitt 2.1.3). Testfélle werden vor der
Implementierung der User-Story erstellt. Die Testfalle werden von Teammitgliedern mit
unterschiedlichen Perspektiven erstellt, z. B. von Kunden, Entwicklern und Testern (Adzic
2009). Die Testfalle kdnnen manuell oder automatisiert ausgefuhrt werden.

Der erste Schritt ist ein Spezifikationsworkshop, in dem die User-Story und (falls noch nicht
definiert) deren Akzeptanzkriterien von den Teammitgliedern analysiert, diskutiert und

Version 4.0.2 Seite 54 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

geschrieben werden. Unvollstandigkeiten, Mehrdeutigkeiten oder Fehlerzustédnde in der User-
Story werden in diesem Prozess behoben. Der nachste Schritt ist die Erstellung der Testfalle.
Dies kann durch das Team als Ganzes oder durch einen einzelnen Tester geschehen. Die
Testfalle basieren auf den Akzeptanzkriterien und kénnen als Beispiele fur die Funktionsweise
der Software angesehen werden. Dies hilft dem Team, die User-Story korrekt umzusetzen.

Da Beispiele und Tests dasselbe sind, werden diese Begriffe oft synonym verwendet.
Wahrend des Testentwurfs kénnen die in den Abschnitten 4.2, 4.3 und 4.4 beschriebenen
Testverfahren angewandt werden.

Typischerweise sind die ersten Testfélle positiv, bestatigen das korrekte Verhalten ohne
Ausnahmen oder Fehlerbedingungen und umfassen die Abfolge der Aktivitaten, die ausgefuhrt
werden, wenn alles wie erwartet ablauft. Nachdem die positiven Testfalle abgeschlossen sind,
sollte das Team Negativtests durchfihren. SchlieRlich sollte das Team nicht-funktionale
Qualitdtsmerkmale abdecken (z. B. Performanz, Gebrauchstauglichkeit). Testfalle sollten so
formuliert werden, dass sie fur die Stakeholder verstandlich sind. In der Regel bestehen
Testfalle aus Satzen in natirlicher Sprache, die die notwendigen Vorbedingungen (falls
vorhanden), die Eingaben und die Nachbedingungen enthalten.

Die Testfalle mussen alle Merkmale der User-Story abdecken und sollten nicht Gber sie
hinausgehen. Die Akzeptanzkriterien kdénnen jedoch auf einige der in der User-Story
beschriebenen Probleme eingehen. Darlber hinaus sollten keine zwei Testfalle dieselben
Merkmale der User-Story beschreiben.

Wenn die Testfalle in einem Format erfasst werden, das von einem Testautomatisierungs-
framework unterstitzt wird, kénnen die Entwickler die Testfalle automatisieren, indem sie den
unterstitzenden Code schreiben, wahrend sie das in einer User-Story beschriebene Feature
implementieren. Die Abnahmetests werden dann zu ausfiihrbaren Anforderungen.

Version 4.0.2 Seite 55 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester

. ISTQB
Foundation Level [e,
5. Management der Testaktivitaten — 335 Minuten
Schliisselbegriffe
Eingangskriterien, Endekriterien, Fehlerbericht, Fehlermanagement, Produktrisiko,
Projektrisiko, Risiko, Risikoanalyse, risikobasierter Test, Risikobewertung,

Risikoidentifizierung, Risikomanagement, Risikominderung, Risikosteuerung, Risikostufe,
Risikolberwachung, Testabschlussbericht, Testansatz, Testfortschrittsbericht, Testkonzept,
Testplanung, Testpyramide, Testquadranten, Teststeuerung, Teststrategie, Testliiberwachung

Lernziele fiir Kapitel 5:

Der Lernende kann ...

5.1 Testplanung

FL-5.1.1 (K2) ... Beispiele zu Zweck und Inhalt eines Testkonzepts geben

FL-5.1.2 (K1) ... den mdglichen Mehrwert, den ein Tester fur die Iterations- und
Releaseplanung schafft, erkennen

FL-5.1.3 (K2) ... Eingangskriterien und Endekriterien vergleichen und gegenuberstellen

FL-5.1.4 (K3) ... Schatzverfahren zur Berechnung des erforderlichen Testaufwands
anwenden

FL-5.1.5 (K3) ... die Priorisierung von Testfallen anwenden

FL-5.1.6 (K1) ... die Konzepte der Testpyramide wiedergeben

FL-5.1.7 (K2) ... die Testquadranten und ihre Beziehungen zu Teststufen und Testarten

zusammenfassen

5.2 Risikomanagement

FL-5.2.1 (K1) ... die Risikostufe anhand der Eintrittswahrscheinlichkeit des Risikos und des
Schadensausmales des Risikos identifizieren

FL-5.2.2 (K2) ... zwischen Projektrisiken und Produktrisiken unterscheiden

FL-5.2.3 (K2) ... den mdéglichen Einfluss der Produktrisikoanalyse auf Grindlichkeit und
Umfang des Testens erklaren

FL-5.2.4 (K2) ... mdgliche MalRnahmen, die als Reaktion auf analysierte Produktrisiken

ergriffen werden kdnnen, erklaren

5.3 Testiiberwachung, Teststeuerung und Testabschluss

FL-5.3.1 (K1) ... die beim Testen verwendeten Metriken wiedergeben
FL-5.3.2 (K2) ... Zweck, Inhalt und Zielgruppen von Testberichten zusammenfassen
FL-5.3.3 (K2) ... Beispiele geben, wie man den Teststatus kommunizieren kann

5.4 Konfigurationsmanagement

FL-5.4.1 (K2) ..

. eine mogliche Unterstutzung des Testens durch das

Konfigurationsmanagement zusammenfassen

5.5 Fehlermanagement

FL-5.5.1 (K3) ..

Version 4.0.2

. einen Fehlerbericht erstellen

Seite 56 von 94

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

01.03.2025

Certified Tester ~ .
Foundation Level [e

5.1 Testplanung

5.1.1 Zweck und Inhalt eines Testkonzepts

Ein Testkonzept beschreibt die Testziele, Ressourcen und Prozesse fir ein Testprojekt. Ein
Testkonzept

o dokumentiert die Mittel und den Zeitplan zur Erreichung der Testziele,

¢ hilft sicherzustellen, dass die durchgefihrten Testaktivitaten die festgelegten Kriterien
erflllen,

e dient als Mittel zur Kommunikation mit Teammitgliedern und anderen Stakeholdern,

e zeigt, dass sich das Testen an die bestehende Testrichtlinie und Teststrategie halt
(oder erklart, warum das Testen davon abweicht).

Die Testplanung gibt den Testern Denkanstde und zwingt sie, sich mit den zukunftigen
Herausforderungen in Bezug auf Risiken, Zeitplane, Mitarbeiter, Werkzeuge, Kosten, Aufwand
usw. auseinanderzusetzen. Der Prozess der Erstellung eines Testkonzepts ist eine nitzliche
Vorgehensweise, um die Mallnahmen zu Uberdenken, die zum Erreichen der Testziele
erforderlich sind.

Zu den typischen Inhalten eines Testkonzepts gehdren:

e Kontext des Testens (z. B. Testumfang,, Testziele, Testbasis)
o Annahmen und Einschrankungen des Testprojekts

e Stakeholder (z. B. Rollen, Verantwortlichkeiten, Relevanz fur das Testen, Einstellung
und Schulungsbedarf)

e Kommunikation (z. B. Formen und Haufigkeit der Kommunikation,
Dokumentationsvorlagen)

¢ Risikoverzeichnis (z. B. Produktrisiken, Projektrisiken)

e Testansatz (z. B. Teststufen, Testarten, Testverfahren, Testliefergegenstande,
Eingangskriterien und Endekriterien, Unabhangigkeit des Testens, zu erhebende
Metriken, Anforderungen an Testdaten, Anforderungen an die Testumgebung,
Abweichungen von der Testrichtlinie und Teststrategie)

o Budget und Zeitplan

Weitere Einzelheiten Uber das Testkonzept und seinen Inhalt sind in der Norm ISO/IEC/IEEE
29119-3 zu finden.
5.1.2 Der Beitrag des Testers zur Iterations- und Releaseplanung

In iterativen SDLCs gibt es typischerweise zwei Arten von Planung: Releaseplanung und
Iterationsplanung.

Version 4.0.2 Seite 57 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Die Releaseplanung sieht die Bereitstellung eines Produkts vor, definiert das Produkt-
Backlog bzw. passt es an und kann die Verfeinerung groRerer User-Storys in eine Reihe
kleinerer User-Storys beinhalten. Sie dient auch als Grundlage fur den Testansatz und das
Testkonzept Uber alle Iterationen. Tester, die an der Releaseplanung mitwirken, beteiligen sich
an der Erstellung testbarer User-Storys und Akzeptanzkriterien (siehe Abschnitt 4.5), nehmen
an Projekt- und Qualitatsrisikoanalysen teil (siehe Abschnitt 5.2), schatzen den mit den User-
Storys verbundenen Testaufwand (siehe Abschnitt 5.1.4), legen den Testansatz fest und
planen die Tests flr das Release.

Die Iterationsplanung sieht das Ende einer einzelnen lteration voraus und befasst sich mit
dem lIterations-Backlog. Die an der lterationsplanung beteiligten Tester nehmen an der
detaillierten Risikoanalyse der User-Storys teil, bestimmen die Testbarkeit der User-Storys ,
zerlegen die User-Storys in Aufgaben (insbesondere Testaufgaben), schatzen den
Testaufwand fir alle Testaufgaben und identifizieren und verfeinern die funktionalen und nicht-
funktionalen Aspekte des Testobjekts.

5.1.3 Eingangskriterien und Endekriterien

Eingangskriterien definieren die Vorbedingungen fur die Durchfiihrung einer bestimmten
Aktivitdt. Wenn die Eingangskriterien nicht erfullt sind, ist es wahrscheinlich, dass sich die
Aktivitdt als schwieriger, zeitaufwendiger, kostspieliger und risikoreicher erweist. Die
Endekriterien legen fest, was erreicht werden muss, um eine Aktivitat fur abgeschlossen zu
erklaren. Eingangskriterien und Endekriterien sollten fir jede Teststufe definiert werden und
unterscheiden sich je nach den Testzielen.

Typische Eingangskriterien sind: Verfuigbarkeit von Ressourcen (z. B. Menschen, Werkzeuge,
Umgebungen, Testdaten, Budget, Zeit), Verfugbarkeit von Testmitteln (z. B. Testbasis,
testbare Anforderungen, User-Storys, Testfalle) und die anfangliche Qualitat eines Testobjekts
(z. B. alle Smoke-Tests wurden bestanden).

Typische Endekriterien sind: Messungen der Grindlichkeit (z. B. erreichter
Uberdeckungsgrad, Anzahl der ungeldsten Fehlerzustande, Fehlerdichte, Anzahl der
fehlgeschlagenen Testfalle) und binare ,ja/nein“-Kriterien (z. B. geplante Tests wurden
ausgefuhrt, statische Tests wurden ausgefihrt, alle gefundenen Fehlerzustande werden
berichtet, alle Regressionstests sind automatisiert).

Auch aufgebrauchte Zeit oder ausgeschopftes Budget kdénnen als glltige Endekriterien
betrachtet werden. Auch wenn keine anderen Akzeptanzkriterien erflllt sind, kann es
akzeptabel sein, das Testen unter solchen Umstanden zu beenden, wenn die Stakeholder das
Risiko, ohne weitere Tests in Betrieb zu gehen, geprift und akzeptiert haben.

In der agilen Softwareentwicklung werden die Endekriterien oft als Definition-of-Done
bezeichnet, die die objektiven Metriken des Teams fir ein freizugebendes Element definieren.
Eingangskriterien, die eine User-Story erfullen muss, um mit der Entwicklung und/oder dem
Testen zu beginnen, werden als Definition-of-Ready bezeichnet.

Version 4.0.2 Seite 58 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

5.1.4 Schatzverfahren

Bei der Schatzung des Testaufwands geht es um die Vorhersage des Umfangs der
testbezogenen Arbeit, die erforderlich ist, um die Testziele eines Testprojekts zu erreichen. Es
ist wichtig, den Stakeholdern klarzumachen, dass die Schatzung auf einer Reihe von
Annahmen beruht und immer mit Schatzfehlern behaftet ist. Die Schatzung fir kleine
Aufgaben ist in der Regel genauer als fur groRe Aufgaben. Bei der Schatzung einer grof3en
Aufgabe kann diese daher in eine Reihe kleinerer Aufgaben zerlegt werden, die dann ihrerseits
geschatzt werden kdnnen.

In diesem Lehrplan werden die folgenden vier Verfahren zur Schatzung beschrieben:

Schitzung basierend auf Verhaltniszahlen: Bei diesem metrikbasierten Verfahren werden
Zahlen aus friheren Projekten innerhalb des Unternehmens gesammelt, was die Ableitung
von "Standard"-Verhaltniszahlen fur dhnliche Projekte ermdglicht. Die Kennzahlen der eigenen
Projekte eines Unternehmens (z. B. aus historischen Daten) sind im Allgemeinen die beste
Quelle fur den Schatzprozess. Diese Standard-Verhaltniszahlen kdnnen dann zur Schatzung
des Testaufwands fir das neue Projekt verwendet werden. Wenn beispielsweise im
vorherigen Projekt das Verhaltnis von Entwicklungs- zu Testaufwand 3:2 war und im aktuellen
Projekt ein Entwicklungsaufwand von 600 Personentagen erwartet wird, kann der
Testaufwand auf 400 Personentage geschatzt werden.

Extrapolation: Bei diesem auf Metriken basierenden Verfahren werden Messungen so friih
wie mdglich im laufenden Projekt durchgefuhrt, um die Daten zu sammeln. Wenn genigend
Beobachtungen vorliegen, kann der fur die verbleibende Arbeit erforderliche Aufwand durch
Extrapolation dieser Daten (in der Regel durch Anwendung eines mathematischen Modells)
angenahert werden. Diese Methode eignet sich sehr gut fur iterative SDLCs. Zum Beispiel
kann das Team den Testaufwand in der nachsten Iteration als den durchschnittlichen Aufwand
der letzten drei Iterationen extrapolieren.

Breitband-Delphi: Bei diesem iterativen, expertenbasierten Verfahren nehmen die Experten
erfahrungsbasierte Schatzungen vor. Jeder Experte schatzt fur sich allein den Aufwand. Die
Ergebnisse werden gesammelt, und wenn es Schatzabweichungen eines Experten gibt, die
aulBerhalb der vereinbarten Grenzen liegen, diskutieren die Experten ihre aktuellen
Schatzungen. Jeder Experte wird dann gebeten, auf der Grundlage dieser Riuckmeldungen
eine neue Schatzung vorzunehmen, wiederum flr sich allein. Dieser Prozess wird so lange
wiederholt, bis ein Konsens erreicht ist. Planungspoker ist eine Variante von Breitband-Delphi,
die haufig in der agilen Softwareentwicklung eingesetzt wird. Beim Planungspoker werden
Schatzungen in der Regel mit Hilfe von Karten mit Zahlen vorgenommen, die die H6he des
Aufwands darstellen.

Drei-Punkt-Schiatzung: Bei diesem expertenbasierten Verfahren werden drei Schatzungen
von den Experten vorgenommen: die optimistischste Schatzung (a), die wahrscheinlichste
Schatzung (m) und die pessimistischste Schatzung (b). Die finale Schatzung (E) ist ihr
gewichtetes arithmetisches Mittel. In der am weitesten verbreiteten Version dieses Verfahrens
wird die Schatzung wie folgt berechnet: E = (a + 4*m + b) / 6. Der Vorteil dieses Verfahrens
besteht darin, dass es den Experten ermdglicht, den Schatzfehler (Standardabweichung, SD)
zu berechnen: SD = (b - a) / 6. Wenn zum Beispiel die Schatzungen (in Personenstunden)
a=6, m=9 und b=18 sind, dann liegt die endgiiltige Schatzung bei 10+2 Personenstunden (d. h.

Version 4.0.2 Seite 59 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

zwischen 8 und 12 Personenstunden), weil E= (6 +4*9 + 18) /6 =10 und SD = (18 -6) /6 =
2.

Siehe (Kan 2003, Koomen 2006, Westfall 2009) fir diese und viele andere
Testschatzverfahren.

5.1.5 Priorisierung von Testfallen

Sobald die Testfalle und Testablaufe spezifiziert und zu Testsuiten zusammengestellt sind,
kénnen diese Testsuiten in einem Testausfihrungsplan angeordnet werden, der die
Reihenfolge ihrer Ausfihrung festlegt. Bei der Priorisierung von Testféllen kénnen
verschiedene Faktoren in Betracht gezogen werden. Die am haufigsten verwendeten
Strategien zur Priorisierung von Testféllen sind die folgenden:

¢ Risikobasierte Priorisierung, bei der sich die Reihenfolge der Testdurchfiihrung nach
den Ergebnissen der Risikoanalyse richtet (siehe Abschnitt 5.2.3). Testfalle, die die
wichtigsten Risiken Uberdecken, werden zuerst ausgefihrt.

e Uberdeckungsbasierte Priorisierung, bei der sich die Reihenfolge der
Testdurchfiihrung nach der Uberdeckung richtet (z. B. Anweisungsiiberdeckung).
Testfalle, die die héchste Uberdeckung erreichen, werden zuerst ausgefiihrt. Bei einer
anderen Variante, der Priorisierung von zusétzlicher Uberdeckung, wird der Testfall mit
der héchsten Uberdeckung zuerst ausgefiihrt; jeder nachfolgende Testfall ist derjenige,
der die héchste zusatzliche Uberdeckung erreicht.

¢ Anforderungsbasierte Priorisierung, bei der sich die Reihenfolge der Testdurch-
fuhrung nach den Prioritdten der Anforderungen richtet, die auf die entsprechenden
Testfalle Ubertragen werden. Die Prioritdten der Anforderungen werden von den
Stakeholdern festgelegt. Testfélle, die sich auf die wichtigsten Anforderungen
beziehen, werden zuerst ausgefuhrt.

Im Idealfall werden die Testfalle in der Reihenfolge ihrer Prioritaten ausgefuhrt, z. B. mit Hilfe
einer der oben genannten Priorisierungsstrategien. Diese Praktik funktioniert jedoch
moglicherweise nicht, wenn die Testfélle oder die zu testenden Features Abhangigkeiten
aufweisen. Wenn ein Testfall mit einer héheren Prioritdt von einem Testfall mit einer
niedrigeren Prioritat abhangt, muss der Testfall mit der niedrigeren Prioritat zuerst ausgefihrt
werden.

Bei der Reihenfolge der Testdurchfihrung muss auch die Verfiigbarkeit von Ressourcen
berlcksichtigt werden. Zum Beispiel die erforderlichen Testwerkzeuge, Testumgebungen oder
Personen, die mdglicherweise nur fir ein bestimmtes Zeitfenster zur Verfigung stehen.

5.1.6 Testpyramide

Die Testpyramide ist ein Modell, das zeigt, dass verschiedene Tests eine unterschiedliche
Granularitdat haben kénnen. Das Testpyramiden-Modell unterstitzt das Team bei der
Testautomatisierung und bei der Verteilung des Testaufwands, indem es zeigt, dass
verschiedene Testziele durch verschiedene Stufen der Testautomatisierung unterstitzt
werden. Die Ebenen der Pyramide stellen Gruppen von Tests dar. Je hdher die Ebene, desto

Version 4.0.2 Seite 60 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

geringer ist die Testgranularitat, desto niedriger ist die Testisolation (d. h. der Grad der
Abhangigkeit von anderen Systemelementen) und umso grof3er die Testdurchfihrungszeit der
Tests. Tests in der untersten Schicht sind klein, isoliert und schnell und priifen einen kleinen
Teil der Funktionalitat, so dass normalerweise viele von ihnen bendtigt werden, um eine
angemessene Uberdeckung zu erreichen. Die oberste Schicht reprasentiert komplexe High-
Level-End-to-End-Tests. Diese High-Level-Tests sind in der Regel langsamer als die Tests
aus den unteren Schichten und prifen normalerweise einen groen Teil der Funktionalitat, so
dass nur wenige von ihnen erforderlich sind, um einen angemessenen Uberdeckungsgrad zu
erreichen. Die Anzahl und Benennung der Schichten kénnen variieren. Das urspriingliche
Testpyramiden-Modell (Cohn 2009) definiert zum Beispiel drei Schichten: "Unit-Tests",
"Service-Tests" und "Ul-Tests". Ein anderes beliebtes Modell definiert Unittests
(Komponententests), Integrationstests (Komponentenintegrationstests) und End-to-End-
Tests. Andere Teststufen (siehe Abschnitt 2.2.1) kénnen ebenfalls verwendet werden.

5.1.7 Testquadranten

Die von Brian Marick definierten Testquadranten (Marick 2003, Crispin 2008) gruppieren die
Teststufen mit den entsprechenden Testarten, Aktivititen, Testverfahren und
Arbeitsergebnissen in der agilen Softwareentwicklung. Das Modell unterstitzt das
Testmanagement dabei, diese zu visualisieren, um sicherzustellen, dass alle geeigneten
Testarten und Teststufen in den SDLC einbezogen werden, und um zu verstehen, dass einige
Testarten fUr bestimmte Teststufen relevanter sind als fir andere. Dieses Modell bietet auch
eine Mdoglichkeit, die Testarten zu differenzieren und allen Stakeholdern, einschlief3lich
Entwicklern, Testern und Fachbereichsvertretern, zu beschreiben.

In diesem Modell kdnnen Tests geschaftlich orientiert oder technologieorientiert sein. Tests
kénnen andererseits das Team unterstiitzen (d. h. die Entwicklung anleiten) oder das Produkt
kritisch betrachten (d. h. sein Verhalten anhand der Erwartungen messen). Die Kombination
dieser beiden Gesichtspunkte bestimmt die vier Quadranten:

e Quadrant Q1 (technologieorientiert, Unterstitzung des Teams). Dieser Quadrant
enthalt Komponententests und Komponentenintegrationstests. Diese Tests sollten
automatisiert und in den Cl-Prozess einbezogen werden.

e Quadrant Q2 (geschaftlich orientiert, Unterstitzung des Teams). Dieser Quadrant
enthalt funktionale Tests, Beispiele, User-Story-basierte Tests, Prototypen flr
Benutzererfahrung, API-Tests und Simulationen. Diese Tests prifen die
Akzeptanzkriterien und kdnnen manuell oder automatisiert sein.

e Quadrant Q3 (geschaftlich orientiert, kritische Betrachtung des Produkts). Dieser
Quadrant enthadlt explorative Tests, = Gebrauchstauglichkeitstests und
Benutzerabnahmetests. Diese Tests sind benutzerorientiert und haufig manuell.

e Quadrant Q4 (technologieorientiert, kritische Betrachtung des Produkts). Dieser
Quadrant enthdlt Smoke-Tests und nicht-funktionale Tests (auler
Gebrauchstauglichkeitstests). Diese Tests sind haufig automatisiert.

Version 4.0.2 Seite 61 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

5.2 Risikomanagement

Organisationen sind mit vielen internen und externen Faktoren konfrontiert, die es unsicher
machen, ob und wann sie ihre Ziele erreichen werden (ISO 31000). Durch Risikomanagement
kénnen Organisationen die Wahrscheinlichkeiten der Zielerreichung erhdhen, die Qualitat
ihrer Produkte verbessern und das Vertrauen der Stakeholder starken.

Die wichtigsten Aktivitaten des Risikomanagements sind:

¢ Risikoanalyse (bestehend aus Risikoidentifizierung und Risikobewertung; siehe
Abschnitt 5.2.3)

¢ Risikosteuerung (bestehend aus Risikominderung und Risikolberwachung; siehe
Abschnitt 5.2.4)

Der Testansatz, bei dem Testaktivititen auf der Grundlage von Risikoanalyse und
Risikosteuerung ausgewanhlt, priorisiert und gesteuert werden, wird als risikobasierter Test
bezeichnet.

5.2.1 Risikodefinition und Risikoattribute

Ein Risiko ist ein potenzielles Ereignis, eine Gefahr, eine Bedrohung oder eine Situation, deren
Eintreten eine nachteilige Auswirkung verursacht. Ein Risiko kann durch zwei Faktoren
charakterisiert werden:

e Eintrittswahrscheinlichkeit des Risikos — die Wahrscheinlichkeit des Eintretens des
Risikos (groRer als null und kleiner als eins)

e Schadensausmal des Risikos (Schaden) — die Folgen des Eintretens

Diese beiden Faktoren driicken die Risikostufe aus, die ein MaR fiir das Risiko ist. Je hoher
die Risikostufe, desto wichtiger ist die Behandlung des Risikos.

5.2.2 Projektrisiken und Produktrisiken

Beim Testen von Software hat man es im Allgemeinen mit zwei Arten von Risiken zu tun:
Projektrisiken und Produktrisiken.

Projektrisiken beziehen sich auf das Management und die Steuerung des Projekts. Zu den
Projektrisiken gehoren:

e Organisatorische Probleme (z. B. Verzogerungen bei der Lieferung von
Arbeitsergebnissen, ungenaue Schatzungen, Kostenkirzungen)

e Personelle Aspekte (z. B. unzureichende Fahigkeiten, Konflikte,
Kommunikationsprobleme, Personalmangel)

e Technische Probleme (z. B. schleichende Ausweitung des Projektumfangs (engl.
scope creep), unzureichende Werkzeugunterstitzung)

o Lieferantenprobleme (z. B. Lieferausfall von Drittanbietern, Konkurs des
unterstiitzenden Unternehmens)

Version 4.0.2 Seite 62 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Eingetretene Projektrisiken kénnen Auswirkungen auf den Zeitplan, das Budget und/oder den
Umfang des Projekts haben, was die Erreichung der Projektziele beeintrachtigt.

Produktrisiken stehen im Zusammenhang mit den Qualitdtsmerkmalen des Produkts (z. B.
beschrieben im Qualitdtsmodell der ISO 25010). Beispiele flr Produktrisiken sind: fehlende
oder falsche Funktionalitédt, falsche Berechnungen, Laufzeitfehler, leistungsschwache
Architektur, ineffiziente Algorithmen, unzureichende Reaktionszeit, schlechte
Benutzererfahrung, Sicherheitsschwachstellen. Produktrisiken kénnen, wenn sie eintreten,
verschiedene negative Folgen nach sich ziehen, darunter:

e Unzufriedenheit der Benutzer

e Verlust von Einnahmen, Vertrauen und Ansehen

e Schaden fur Dritte

e Hohe Wartungskosten, Uberlastung des Helpdesks
e Strafrechtliche Sanktionen

¢ In extremen Fallen korperliche Schaden, Verletzungen oder sogar Tod

5.2.3 Produktrisikoanalyse

Aus der Sicht des Testens besteht das Ziel der Produktrisikoanalyse darin, ein Bewusstsein
fur das Produktrisiko zu schaffen, um den Testaufwand so zu fokussieren, dass die
verbleibende Risikostufe des Produkts minimiert wird. Im Idealfall beginnt die Risikoanalyse
des Produktrisikos bereits in einem friihen Stadium des SDLC.

Die Produktrisikoanalyse besteht aus Risikoidentifizierung und Risikobewertung. Bei der
Risikoidentifizierung geht es um die Erstellung einer umfassenden Liste von Risiken. Die
Stakeholder kénnen Risiken mit Hilfe verschiedener Verfahren und Werkzeuge identifizieren,
z. B. durch Brainstorming, Workshops, Interviews oder Ursache-Wirkungs-Diagramme. Die
Risikobewertung umfasst die Kategorisierung der identifizierten Risiken, die Bestimmung ihrer
Eintrittswahrscheinlichkeit, des SchadensausmalRes und der Risikostufe sowie die
Priorisierung und Vorschlage fir den Umgang mit den Risiken. Die Kategorisierung hilft bei
der Zuweisung von MalRnahmen zur Risikominderung, da Risiken, die in dieselbe Kategorie
fallen, in der Regel mit einem &hnlichen Ansatz gemindert werden kénnen.

Bei der Risikobewertung kann ein quantitativer oder qualitativer Ansatz oder eine Mischung
aus beidem verwendet werden. Beim quantitativen Ansatz wird die Risikostufe als
Multiplikation von Eintrittswahrscheinlichkeit des Risikos und Schadensausmal} des Risikos
berechnet. Beim qualitativen Ansatz kann die Risikostufe anhand einer Risikomatrix bestimmt
werden.

Die Risikoanalyse des Produktrisikos kann die Grindlichkeit und den Testumfang
beeinflussen. lhre Ergebnisse werden verwendet, um

e den durchzufiihrenden Testumfang zu bestimmen,

o die einzelnen Teststufen zu bestimmen und Testarten vorzuschlagen, die durchgefuhrt
werden sollen,

Version 4.0.2 Seite 63 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

« die einzusetzenden Testverfahren und die zu erreichende Uberdeckung festzulegen,
e den Testaufwand fur jede Aufgabe zu schatzen,

e Tests zu priorisieren, um die kritischen Fehlerzustande so frih wie moglich zu finden,
sowie

o festzustellen, ob neben dem Testen weitere Aktivitdten zur Verringerung des Risikos
eingesetzt werden kénnen.

5.2.4 Produktrisikosteuerung

Die Steuerung von Produktrisiken umfasst alle MalRnahmen, die als Reaktion auf identifizierte
und bewertete Produktrisiken ergriffen werden. Die Produktrisikosteuerung besteht aus
Risikominderung und Risikouberwachung. Bei der Risikominderung geht es darum, die in der
Risikobewertung vorgeschlagenen MalRnahmen zur Verringerung der Risikostufe
umzusetzen. Ziel der Risikouberwachung ist es, die Effektivitdt der Mallnahmen zur
Risikominderung zu gewahrleisten, weitere Informationen zur Verbesserung der
Risikobewertung zu erhalten und neu auftretende Risiken zu erkennen.

Was die Steuerung von Produktrisiken betrifft, so sind nach der Analyse eines Risikos mehrere
Reaktionsmaoglichkeiten auf das Risiko mdglich, z. B. Risikominderung durch Testen,
Risikoakzeptanz, Risikotransfer oder einen Notfallplan (Van Veenendaal 2012). Folgende
Mafnahmen kénnen ergriffen werden, um die Produktrisiken durch Testen zu mindern:

e Auswahl von Testern mit dem richtigen Maf} an Erfahrung und Fahigkeiten, die fur
einen bestimmten Risikotyp geeignet sind

e Anwendung eines geeigneten Mal3es an Unabhangigkeit beim Testen

e Durchfiihrung von Reviews und statischen Analysen

e Anwendung geeigneter Testverfahren und Uberdeckungsgrade

e Anwendung geeigneter Testarten fir die betroffenen Qualitdtsmerkmale

e Durchfiihrung dynamischer Tests, einschlief3lich Regressionstests

5.3 Testuberwachung, Teststeuerung und Testabschluss

Bei der Testuberwachung geht es um das Sammeln von Informationen liber das Testen. Diese
Informationen werden verwendet, um den Testfortschritt zu bewerten und zu messen, ob die
Endekriterien oder die mit den Endekriterien verbundenen Testaufgaben erflllt sind, wie z. B.
die Erfillung der Ziele fir die Uberdeckung von Produktrisiken, Anforderungen oder
Akzeptanzkriterien.

Die Teststeuerung nutzt die Informationen aus der Testuberwachung, um in Form von
Steuerungsmaflnahmen Anleitungen und notwendige KorrekturmaRnahmen zu geben, um
das Testen so effektiv und effizient wie moglich zu gestalten. Beispiele fur
Steuerungsmalinahmen sind:

Version 4.0.2 Seite 64 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

e Neupriorisierung von Tests, wenn ein identifiziertes Risiko zu einem Problem wird

e Neubewertung, ob ein Testelement die Eingangskriterien oder die Endekriterien nach
einer Uberarbeitung erfiillt

o Anpassung des Testzeitplans, um eine Verzégerung bei der Bereitstellung der
Testumgebung auszugleichen

e Hinzufiigen neuer Ressourcen, bei Bedarf

Beim Testabschluss werden Daten aus abgeschlossenen Testaktivitaten gesammelt, um
Erfahrungen, Testmittel und andere relevante Informationen 2zu konsolidieren.
Testabschlussaktivitdten finden an Projektmeilensteinen statt, z. B. wenn eine Teststufe
abgeschlossen ist, eine agile lteration beendet ist, ein Testprojekt abgeschlossen (oder
abgebrochen) ist, ein Softwaresystem freigegeben oder ein Wartungsrelease abgeschlossen
ist.

5.3.1 Beim Testen verwendete Metriken

Testmetriken werden erfasst, um den Fortschritt gegenliber dem definierten Testzeitplan und
Budget, die aktuelle Qualitat des Testobjekts und die Effektivitat der Testaktivitaten in Bezug
auf die Testziele oder ein lterationsziel aufzuzeigen. Die Testliberwachung erfasst eine
Vielzahl von Metriken zur Unterstutzung der Teststeuerung und des Testabschlusses.

Zu den gangigen Testmetriken gehoren:

o Metriken zum Projektfortschritt (z. B. abgeschlossene Aufgaben,
Ressourcenverbrauch, Testaufwand)

e Metriken zum Testfortschritt (z. B. Fortschritt bei der Testfallrealisierung, Fortschritt bei
der Vorbereitung der Testumgebung, Anzahl der ausgefiuhrten/nicht ausgefiihrten
Testfélle, bestandene/nicht bestandene Testfalle, Zeit fur die Testdurchfliihrung)

e Metriken zur Produktqualitat (z. B. Verfuigbarkeit, Reaktionszeit, mittlere Betriebsdauer
bis zum Ausfall (Meantime to Failure, MTTF))

e Metriken fur Fehlerzustéande (z. B. Anzahl und Prioritaten der gefundenen/behobenen
Fehlerzustande, Fehlerdichte, Fehlerfindungsrate (Defect Detection Percentage,
DDP))

e Metriken zu Risiken (z. B. verbleibende Risikostufe)
e Metriken zur Uberdeckung (z. B. Anforderungsiiberdeckung, Codetiberdeckung)

e Metriken zu den Kosten (z. B. Kosten fur das Testen, organisatorische Kosten fur
Qualitat)
5.3.2 Zweck, Inhalt und Zielgruppen fur Testberichte

Der Zweck eines Testberichts ist es, Informationen ({ber die Testaktivitaten
zusammenzufassen und zu kommunizieren, sowohl wahrend als auch am Ende einer
Testaktivitat. Testfortschrittsberichte unterstitzen die laufende Teststeuerung und muissen

Version 4.0.2 Seite 65 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

geniigend Informationen liefern, um Anderungen am Testzeitplan, an den Ressourcen oder
am Testkonzept vorzunehmen, wenn solche Anderungen aufgrund von Abweichungen vom
Plan oder veranderten Umstanden erforderlich sind. Testabschlussberichte fassen eine
bestimmte Testaktivitdt zusammen (z. B. Teststufe, Testzyklus, Iteration) und kdnnen
Informationen fir nachfolgende Tests liefern.

Waéahrend der Testiberwachung und Teststeuerung erstellt das Testteam
Testfortschrittsberichte fur die Stakeholder, um sie auf dem Laufenden zu halten.
Testfortschrittsberichte werden im Allgemeinen in regelmafligen Abstanden (z. B. taglich,
wdchentlich) erstellt und enthalten typischerweise:

e Testzeitraum

o Testfortschritt (z. B. vor oder hinter dem Zeitplan), einschlieBlich aller festgestellten
Abweichungen

¢ Hindernisse fir das Testen und deren Umgehungsmaoglichkeiten
e Testmetriken (siehe Abschnitt 5.3.1 fur Beispiele)
¢ Neue und veranderte Risiken innerhalb des Testzeitraumes

¢ Geplante Tests fir den nachsten Zeitraum

Ein Testabschlussbericht wird wahrend des Testabschlusses erstellt, wenn ein Projekt, eine
Teststufe oder eine Testart abgeschlossen ist und im Idealfall die Endekriterien erfiillt wurden.
Er basiert auf Testfortschrittsberichten und anderen Daten. Typische Testabschlussberichte
beinhalten:

e Zusammenfassung der durchgefiihrten Tests

e Bewertung der Tests und der Qualitdt des Produkts auf der Grundlage des
ursprunglichen Testkonzepts (d. h. Testziele und Endekriterien)

e Abweichungen vom Testkonzept (z. B. Abweichungen vom geplanten Testzeitplan, von
der Dauer und vom Aufwand).

¢ Hindernisse beim Testen und Umgehungen
e Testmetriken auf der Grundlage von Testfortschrittsberichten
o Restrisiken, nicht behobene Fehlerzustéande

e Lessons Learned, die fir das Testen relevant sind

Unterschiedliche Zielgruppen erfordern unterschiedliche Informationen in den Berichten und
beeinflussen den Grad der Formalitdt und die Haufigkeit der Testberichterstattung. Die
Testberichterstattung Uber den Testfortschritt an andere Mitglieder desselben Teams
geschieht haufig und informell, wahrend die Berichterstattung tUber den Testabschluss einer
festgelegten Vorlage folgt und nur einmal durchgefuhrt wird.

Die Norm ISO/IEC/IEEE 29119-3 enthalt Vorlagen und Beispiele fur Testfortschrittsberichte
(genannt Teststatusberichte) und Testabschlussberichte.

Version 4.0.2 Seite 66 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

5.3.3 Kommunikation des Teststatus

Die beste Art der Kommunikation des Teststatus hangt von den Bedurfnissen des
Testmanagements, der organisationsweiten Teststrategie, den regulatorischen Vorgaben
oder, im Falle von selbstorganisierten Teams (siehe Abschnitt 1.5.2), vom Team selbst ab. Zu
den Optionen gehoren:

e Mundliche Kommunikation mit Teammitgliedern und anderen Stakeholdern
e Dashboards (z. B. ClI/CD-Dashboards, Taskboards und Burn-down-Charts)
e Elektronische Kommunikationskanale (z. B. E-Mail, Chat)

¢ Online-Dokumentation

e Formale Testberichte (siehe Abschnitt 5.3.2)

Eine oder mehrere dieser Optionen koénnen verwendet werden. Eine formellere
Kommunikation kann sich fiir verteilte Teams anbieten, in denen eine direkte Kommunikation
von Angesicht zu Angesicht aufgrund von geografischen Entfernungen oder Zeitunterschieden
nicht immer mdglich ist. In der Regel sind verschiedene Stakeholder an unterschiedlichen
Arten von Informationen interessiert, so dass die Kommunikation entsprechend angepasst
werden sollte.

5.4 Konfigurationsmanagement

Beim Testen stellt das Konfigurationsmanagement (KM) eine Disziplin zur ldentifizierung,
Steuerung und Verfolgung von Arbeitsergebnissen wie Testkonzepten, Teststrategien,
Testbedingungen, Testfallen, Testskripten, Testergebnissen, Testprotokollen und Test-
berichten als Konfigurationselemente dar.

Fir ein komplexes Konfigurationselement (z. B. eine Testumgebung) zeichnet das KM die
Elemente, aus denen es besteht, ihre Beziehungen und Versionen auf. Wenn das
Konfigurationselement zum Testen freigegeben wird, wird es zur Baseline und kann nur durch
einen formalen Anderungskontrollprozess geéandert werden.

Das Konfigurationsmanagement sichert die Daten eines Konfigurationselements, wenn eine
neue Baseline erstellt wird. Es ist mdglich, zu einer friiheren Baseline zurlickzukehren, um
frGhere Testergebnisse zu reproduzieren.

Um das Testen richtig zu unterstutzen, stellt das KM Folgendes sicher:

e Alle Konfigurationselemente, einschliel3lich der Testelemente (einzelne Teile des
Testobjekts), werden eindeutig identifiziert, versionskontrolliert, auf Anderungen hin
verfolgt und mit anderen Konfigurationselementen in Beziehung gesetzt, damit die
Verfolgbarkeit wahrend des gesamten Testprozesses aufrechterhalten werden kann.

¢ Alle identifizierten Elemente der Dokumentation und der Software werden als
Testmittel eindeutig referenziert.

Version 4.0.2 Seite 67 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Kontinuierliche Integration, kontinuierliche Auslieferung, kontinuierliche Bereitstellung und die
damit verbundenen Tests werden in der Regel als Teil einer automatisierten DevOps-
Auslieferungskette implementiert (siehe Abschnitt 2.1.4), zu der normalerweise auch
automatisiertes KM gehort.

5.5 Fehlermanagement

Da eines der wichtigsten Testziele darin besteht, Fehlerzustande zu finden, ist ein etablierter
Prozess fir das Fehlermanagement unerlasslich. Obwohl wir hier von "Fehlern" sprechen,
konnen sich die gemeldeten Anomalien als tatsachliche Fehlerzustande oder als etwas
anderes herausstellen (z. B. falsch positives Ergebnis, Anderungsanforderung) — dies wird
wahrend der Bearbeitung der Fehlerberichte geklart. Anomalien kénnen in jeder Phase des
SDLC gemeldet werden und die Form hangt vom SDLC ab. Der Prozess des
Fehlermanagements umfasst mindestens einen Arbeitsablauf fur die Behandlung einzelner
Fehlerzustande oder Anomalien von ihrer Entdeckung bis zu ihrer SchlieBung sowie Regeln
fur ihre Klassifizierung. Der Workflow umfasst typischerweise Aktivitaten zur Protokollierung
der gemeldeten Anomalien, zu deren Analyse und Klassifizierung, zur Entscheidung UGber eine
geeignete Reaktion, z. B. Behebung oder Beibehaltung des Fehlerzustands, und letztendlich
zur SchlieBung des Fehlerberichts. Der Prozess muss von allen Beteiligten befolgt werden. Es
ist ratsam, Fehlerzustdnde aus statischen Tests (insbesondere der statischen Analyse) auf
ahnliche Weise zu behandeln.

Typische Fehlerberichte haben die folgenden Ziele:

e Bereitstellung ausreichender Informationen fir diejenigen, die fir die Bearbeitung und
Behebung gemeldeter Fehlerzustande verantwortlich sind, um das Problem zu I6sen

o Verfolgung der Qualitat des Arbeitsergebnisses

o Bereitstellung von Ideen zur Verbesserung des Entwicklungs- und Testprozesses

Ein Fehlerbericht, der wahrend des dynamischen Testens aufgezeichnet wird, enthalt in der
Regel folgende Angaben:

e Eindeutige Kennung
o Titel mit einer kurzen Zusammenfassung der Anomalie

e Datum, an dem die Anomalie beobachtet wurde, ausstellende Organisation und Autor,
einschliellich seiner Rolle

¢ |dentifikation des Testobjekts und der Testumgebung

e Kontext des Fehlerzustands (z. B. laufender Testfall, durchgefiihrte Testaktivitat,
SDLC-Phase und andere relevante Informationen wie verwendete Testverfahren,
Checklisten oder Testdaten)

e Beschreibung der Fehlerwirkung, um eine Reproduktion und Behebung zu
ermdglichen, einschlief3lich der Testschritte, die die Anomalie aufgedeckt haben, sowie
relevante Testprotokolle, Datenbankauszuge, Screenshots oder Aufzeichnungen

o Erwartete Ergebnisse und tatsachliche Ergebnisse

Version 4.0.2 Seite 68 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

e Fehlerschweregrad (Grad der Auswirkung) der Fehlerwirkung auf die Interessen der
Stakeholder oder Anforderungen
e Prioritat fur die Behebung

e Fehlerstatus (z. B. offen, zurlickgestellt, doppelt, auf Behebung wartend, auf
Fehlernachtest wartend, wiedererdéffnet, geschlossen, zurlickgewiesen)

e Referenzen (z. B. auf den Testfall)

Einige dieser Daten kbnnen bei der Verwendung von Fehlermanagementwerkzeugen
automatisch eingefigt werden (z. B. Kennung, Datum, Autor und Anfangsstatus).
Dokumentvorlagen fir einen Fehlerbericht und ein beispielhafter Fehlerbericht finden sich in
der Norm ISO/IEC/IEEE 29119-3, die Fehlerberichte als Abweichungsberichte bezeichnet.

Version 4.0.2 Seite 69 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester .
Foundation Level [

nnnnnnnnnnn

6. Testwerkzeuge — 20 Minuten

Schliisselbegriffe

Testautomatisierung

Lernziele fiir Kapitel 6: Der Lernende kann ...
6.1 Werkzeugunterstitzung fiir das Testen

FL-6.1.1 (K2) ... eine mdgliche Unterstutzung des Testens durch verschiedene Arten von
Testwerkzeugen erklaren

6.2 Nutzen und Risiken von Testautomatisierung

FL-6.2.1 (K1) ... die Nutzen und Risiken von Testautomatisierung wiedergeben

Version 4.0.2 Seite 70 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

6.1 Werkzeugunterstlutzung fur das Testen

Testwerkzeuge unterstiitzen und erleichtern viele Testaktivitaten. Beispiele hierfir sind unter
anderem:

Testmanagementwerkzeuge — erhéhen die Effizienz des Testprozesses, indem sie das
Management des SDLC, der Anforderungen, der Tests, der Fehlerzustande und der
Konfiguration erleichtern.

Werkzeuge fir statische Tests — unterstiitzen den Tester bei der Durchfihrung von
Reviews und statischen Analysen.

Werkzeuge fur Testentwurf und Testrealisierung — erleichtern die Erstellung von
Testfallen, Testdaten und Testablaufen.

Werkzeuge zur Testdurchfihrung und Testiuberdeckung - erleichtern die
automatisierte Testdurchfihrung und die Messung der Uberdeckung.

Werkzeuge flr nicht-funktionale Tests — ermdglichen dem Tester die Durchfihrung
nicht-funktionaler Tests, die manuell nur schwer oder gar nicht durchfiihrbar sind.

DevOps-Werkzeuge — unterstitzen die DevOps-Auslieferungskette, die Verfolgung
von Arbeitsablaufen, den automatisierten Build-Prozess, CI/CD.

Werkzeuge fiir die Zusammenarbeit — erleichtern die Kommunikation.

Werkzeuge zur Unterstitzung der Skalierbarkeit und Standardisierung der
Bereitstellung (z. B. virtuelle Maschinen, Container-Tools)

Jedes andere Werkzeug, das beim Testen hilft (z. B. ist ein Tabellenkalkulations-
programm ein Testwerkzeug im Kontext des Testens)

6.2 Nutzen und Risiken von Testautomatisierung

Die bloRe Anschaffung eines Werkzeugs ist keine Erfolgsgarantie. Jedes neue Werkzeug
erfordert einen gewissen Aufwand, um einen echten und dauerhaften Nutzen zu erzielen
(z. B. fur die EinfuUhrung, Wartung und Schulung). Es gibt auch einige Risiken, die analysiert
und gemindert werden muissen.

Zu den potenziellen Nutzen von Testautomatisierung gehoren:

Zeitersparnis durch Verringerung sich wiederholender manueller Arbeiten (z. B.
Ausfiihrung von Regressionstests, erneute Eingabe derselben Testdaten, Vergleich
der erwarteten Ergebnisse mit den tatsachlichen Ergebnissen und Prufung der
Einhaltung von Programmierrichtlinien)

Vermeidung einfacher menschlicher Fehlhandlungen durch gréRere Konsistenz und
Wiederholbarkeit (z. B. werden Tests konsequent aus Anforderungen abgeleitet,
Testdaten systematisch erstellt und Tests von einem Werkzeug in der gleichen
Reihenfolge und mit der gleichen Haufigkeit ausgefihrt)

Version 4.0.2 Seite 71 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Objektivere Bewertung (z. B. Uberdeckung) und Bereitstellung von Messungen, die fiir
Menschen zu kompliziert in ihrer Ermittlung sind

Leichterer Zugang zu Informationen Uber das Testen zur Unterstitzung des
Testmanagements und der Berichterstattung (z. B. Statistiken, Diagramme und
aggregierte Daten Uber den Testfortschritt, die Ausfallraten und die Dauer der
Testdurchflhrung)

Verkurzte Testdurchfihrungszeiten fir eine friihere Erkennung von Fehlerzustanden,
schnellere Rickmeldungen und kurzere Produkteinfihrungszeiten

Mehr Zeit fir Tester, um neue, intensivere und effektivere Tests zu entwerfen

Zu den potenziellen Risiken von Testautomatisierung gehoren:

Unrealistische Erwartungen hinsichtlich der Vorteile eines Werkzeugs (einschlieRlich
Funktionalitéat und leichte Handhabung)

Ungenaue Schéatzungen von Zeit, Kosten und Aufwand flr die Einflhrung eines
Testwerkzeugs, die Pflege von Testskripten und die Anderung des bestehenden
manuellen Testprozesses

Verwendung eines Testwerkzeugs, wenn manuelles Testen besser geeignet ist

Zu starkes Vertrauen in ein Werkzeug, z. B. Vernachlassigung der Notwendigkeit des
menschlichen kritischen Denkens

Die Abhangigkeit vom Werkzeuganbieter, der moglicherweise seine Geschéaftstatigkeit
einstellt, das Werkzeug vom Markt nimmt, das Werkzeug an einen anderen Anbieter
verkauft oder schlechten Support bietet (z. B. bei Antworten auf Anfragen, bei Upgra-
des und der Behebung von Fehlerzustanden).

Verwendung einer Open-Source-Software, die modglicherweise nicht mehr
weiterentwickelt wird, d. h., es sind keine weiteren Updates verfligbar, oder ihre
internen Komponenten missen im Zuge der Weiterentwicklung recht haufig angepasst
werden.

Das Automatisierungswerkzeug ist nicht mit der Entwicklungsplattform kompatibel.

Wahl eines ungeeigneten Werkzeugs, das nicht den regulatorischen Anforderungen
und/oder den Sicherheitsstandards entspricht

Version 4.0.2 Seite 72 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

7. Literaturhinweise

7.1 Normen und Standards

ISO/IEC/IEEE 29119-1 (2022): Software- und Systemengineering — Software-Test — Teil 1:
Konzepte und Definitionen

ISO/IEC/IEEE 29119-2 (2021): Software- und Systemengineering — Software-Test — Teil 2:
Testprozesse

ISO/IEC/IEEE 29119-3 (2021): Software- und Systemengineering — Software-Test — Teil 3:
Testdokumentation

ISO/IEC/IEEE 29119-4 (2021): Software- und Systemengineering — Software-Test — Teil 4:
Testtechniken

ISO/IEC 25010 (2023-11): System- und Software-Engineering — Qualitatskriterien und
Bewertung von System und Softwareprodukten (SQuaRE) — Produktqualitdtsmodell

ISO/IEC 20246 (2017): System und Software-Engineering— Bewertungen von
Arbeitsergebnissen

ISO/IEC/IEEE 14764:2022: Software-Engineering— Software-Lebenszyklus-Prozesse —
Instandhaltung

ISO 31000 (2018): Risikomanagement — Leitlinien

7.2 Fachliteratur

Adzic, G. (2009): Bridging the Communication Gap: Specification by Example and Agile
Acceptance Testing, Neuri Limited

Ammann, P. und Offutt, J. (2016): Introduction to Software Testing (2e), Cambridge University
Press

Andrews, M. und Whittaker, J. (2006): How to Break Web Software: Functional and Security
Testing of Web Applications and Web Services, Addison-Wesley Professional

Beck, K. (2003): Test Driven Development: By Example, Addison-Wesley
Beizer, B. (1990): Software Testing Techniques (2e), Van Nostrand Reinhold: Boston MA
Boehm, B. (1981): Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ

Buxton, J.N. und Randell B. (eds) (1970): Software Engineering Techniques. Report on a
conference sponsored by the NATO Science Committee, Rome, Italy, 27-31 October 1969,
p. 16

Version 4.0.2 Seite 73 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

Chelimsky, D. et al. (2010): The Rspec Book: Behaviour Driven Development with Rspec,
Cucumber, and Friends, The Pragmatic Bookshelf: Raleigh, NC

Cohn, M. (2009): Succeeding with Agile: Software Development Using Scrum, Addison-
Wesley

Copeland, L. (2004): A Practitioner's Guide to Software Test Design, Artech House: Norwood
MA

Craig, R. und Jaskiel, S. (2002): Systematic Software Testing, Artech House: Norwood MA

Crispin, L. und Gregory, J. (2008): Agile Testing: A Practical Guide for Testers and Agile
Teams, Pearson Education: Boston MA

Forgacs, |. und Kovacs, A. (2019): Practical Test Design: Selection of traditional and
automated test design techniques, BCS, The Chartered Institute for IT

Gawande A. (2009): The Checklist Manifesto: How to Get Things Right, New York, NY:
Metropolitan Books

Gartner, M. (2011): ATDD by Example: A Practical Guide to Acceptance Test-Driven Devel-
opment, Pearson Education: Boston MA

Gilb, T., Graham, D. (1993): Software Inspection, Addison Wesley

Hendrickson, E. (2013): Explore It!: Reduce Risk and Increase Confidence with Exploratory
Testing, The Pragmatic Programmers

Hetzel, B. (1988): The Complete Guide to Software Testing, 2 ed., John Wiley and Sons

Jeffries, R., Anderson, A., Hendrickson, C. (2000): Extreme Programming Installed, Addison-
Wesley Professional

Jorgensen, P. (2014): Software Testing, A Craftsman’s Approach (4e), CRC Press: Boca
Raton FL

Kan, S. (2003): Metrics and Models in Software Quality Engineering, 2™ ed., Addison-Wesley
Kaner, C., Falk, J. und Nguyen, H.Q. (1999): Testing Computer Software, 2 ed., Wiley

Kaner, C., Bach, J. und Pettichord, B. (2011): Lessons Learned in Software Testing: A Context-
Driven Approach, 1% ed., Wiley

Kim, G., Humble, J., Debois, P. und Willis, J. (2016): The DevOps Handbook, Portland, OR

Koomen, T., van der Aalst, L., Broekman, B. und Vroon, M. (2006): TMap Next for result-driven
testing, UTN Publishers, The Netherlands

Myers, G. (2011): The Art of Software Testing, (3e), John Wiley & Sons: New York NY

O’Regan, G. (2019): Concise Guide to Software Testing, Springer Nature Switzerland

Version 4.0.2 Seite 74 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB®
Foundation Level [e

Pressman, R.S. (2019): Software Engineering. A Practitioner’s Approach, 9" ed., McGraw Hill

Roman, A. (2018): Thinking-Driven Testing. The Most Reasonable Approach to Quality
Control, Springer Nature Switzerland

Van Veenendaal, E. (ed.) (2012): Practical Risk-Based Testing, The PRISMA Approach, UTN
Publishers: The Netherlands

Watson, A.H., Wallace, D.R. und McCabe, T.J. (1996): Structured Testing: A Testing
Methodology Using the Cyclomatic Complexity Metric, U.S. Dept. of Commerce, Technology
Administration, NIST

Westfall, L. (2009): The Certified Software Quality Engineer Handbook, ASQ Quality Press
Whittaker, J. (2002): How to Break Software: A Practical Guide to Testing, Pearson

Whittaker, J. (2009): Exploratory Software Testing: Tips, Tricks, Tours, and Techniques to
Guide Test Design, Addison Wesley

Whittaker, J. und Thompson, H. (2003): How to Break Software Security, Addison Wesley

Wiegers, K. (2001): Peer Reviews in Software: A Practical Guide, Addison-Wesley
Professional

7.3 Artikel und Internetquellen

Brykczynski, B. (1999): “A survey of software inspection checklists’, ACM SIGSOFT Software
Engineering Notes, 24(1), pp. 82-89

Enders, A. (1975): “An Analysis of Errors and Their Causes in System Programs”, |IEEE
Transactions on Software Engineering 1(2), pp. 140-149

IREB CPRE Glossar in Deutsch/Englisch: https://www.ireb.org/de/cpre/glossary/

Manna, Z., Waldinger, R. (1978): “The logic of computer programming”, IEEE Transactions on
Software Engineering 4(3), pp. 199-229

Marick, B. (2003): Exploration through Example, http://www.exampler.com/old-
blog/2003/08/21.1.html#agile-testing-project-1

Nielsen, J. (1994): “Enhancing the explanatory power of usability heuristics”, Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems: Celebrating
Interdependence, ACM Press, pp. 152—158

Salman. I. (2016): “Cognitive biases in software quality and testing”, Proceedings of the 38th
International Conference on Software Engineering Companion (ICSE '16), ACM, pp. 823-826

Wake, B. (2003): “INVEST in Good Stories, and SMART Tasks,” https://xp123.com/arti-
cles/invest-in-good-stories-and-smart-tasks/

Version 4.0.2 Seite 75 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

7.4 Deutschsprachige Bucher und Artikel (in diesem Lehrplan nicht direkt
referenziert)

Bath, G.; McKay, J.; Gronau, V. (Ubersetzung) (2015): Praxiswissen Softwaretest — Test
Analyst und Technical Test Analyst Aus- und Weiterbildung zum Certified Tester — Advanced
Level nach ISTQB-Standard, 3., Uberarbeitete Auflage, dpunkt.verlag, Heidelberg

Baumgartner, M.; Gwihs, St.; Seidl, R.; Steirer, T.; Wendland, M (2021): Basiswissen
Testautomatisierung, 3., aktualisierte und Uberarbeitete Auflage, dpunkt.verlag, Heidelberg

Daigl, M.; Glunz, R. (2016): ISO 29119 — Die Softwaretest-Normen verstehen und anwenden,
dpunkt.verlag, Heidelberg

Hendrickson, E. (2014): Explore It! Wie Softwareentwickler und Tester mit explorativem Testen
Risiken reduzieren und Fehler aufdecken (Aus dem Amerikanischen Ubersetzt von Meike
Mertsch), dpunkt.verlag, Heidelberg

Liggesmeyer, P. (2009): Software-Qualitat, Spektrum-Verlag, Heidelberg, Berlin

Linz, T. (2023): Testen in Scrum-Projekten — Leitfaden fir Softwarequalitat in der agilen Welt.
Aus- und Weiterbildung zum ISTQB® Certified Agile Tester — Foundation Extension, 3.,
aktualisierte und Uberarbeitete Auflage, dpunkt.verlag, Heidelberg

Ekssir-Monafred, M. (2022): Soft vs. Hard Skills in Software Testing, https://www.asqf.de/soft-
vs-hard-skills-in-software-testing/

Rdéssler, P.; Schlich, M.; Kneuper, R. (2013): Reviews in der System- und Software-
entwicklung: Grundlagen, Praxis, kontinuierliche Verbesserung, 1. Auflage, dpunkt.verlag,
Heidelberg

Sneed, H.M.; Baumgartner, M.; Seidl, R. (2011): Der Systemtest — Von den Anforderungen
zum Qualitatsnachweis, 3., aktualisierte und erweiterte Auflage, Carl Hanser Verlag, Miinchen

Spillner, A.; Breymann, U. (2016): Lean Testing fur C++-Programmierer — angemessen statt
aufwendig testen, dpunkt.verlag, Heidelberg

Spillner, A.; Linz, T. (2024): Basiswissen Softwaretest: Aus- und Weiterbildung zum Certified
Tester — Foundation Level nach ISTQB®-Standard, 7., (iberarbeitete u. aktualisierte Auflage,
dpunkt.verlag, Heidelberg

Winter, M.; Ekssir-Monfared, M.; Sneed, H.M.; Seidl, R.; Borner, L. (2012): Der Integrationstest
— Von Entwurf und Architektur zur Komponenten- und Systemintegration, Carl Hanser Verlag,
Miinchen

Winter, M.; RoRner, Th.; Brandes, Ch.; Gotz, H. (2016): Basiswissen modellbasierter Test,
Aus- und Weiterbildung zum ISTQB® Foundation Level — Certified Model-Based Tester, 2.,
vollstéandig Uberarbeitete und aktualisierte Auflage, dpunkt.verlag, Heidelberg

Version 4.0.2 Seite 76 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester ~ .
Foundation Level [e

8. Anhang A — Lernziele/kognitive Stufen des Wissens

Die folgenden Lernziele werden in diesem Lehrplan verwendet. Jedes Thema des Lehrplans
wird anhand des jeweiligen Lernziels behandelt. Die Lernziele dieses Lehrplans enden mit
einem Aktionsverb, das dem jeweiligen kognitiven Wissensstand entspricht (siehe unten).

Wissensstufe 1: Sich erinnern (K1) — der Lernende kann einen Begriff oder ein Konzept
erkennen, sich erinnern oder abrufen.

Aktionsverben: identifizieren, wiedergeben, erinnern, erkennen.

Beispiele: Der Lernende kann ...

o " .. typische Testziele identifizieren"
o "... die Konzepte der Testpyramide wiedergeben"
e "...den mdglichen Mehrwert, den ein Tester fur die Iterations- und Releaseplanung

schafft, erkennen"

Wissensstufe 2: Verstehen (K2) — Der Lernende kann die Griinde flir oder Erklarungen zu
Aussagen zu einem Thema auswahlen. Typische beobachtbare Leistungen zusammenfassen,
vergleichen, einordnen und Beispiele fiir Konzepte des Testens nennen.

Aktionsverben: einordnen, vergleichen, etwas gegenuberstellen, differenzieren,
unterscheiden, veranschaulichen, erklaren, Beispiele geben, interpretieren, zusammenfassen.

Beispiele: Der Lernende kann ...

e "...die verschiedenen Mdglichkeiten zum Schreiben von Akzeptanzkriterien
einordnen"”

e "...die verschiedenen Rollen beim Testen vergleichen" (nach Gemeinsamkeiten,
Unterschieden oder beidem suchen)

e "... zwischen Projektrisiken und Produktrisiken unterscheiden" (ermoglicht die
Unterscheidung der Konzepte)

e "...die Auswirkungen des Kontexts auf den Testprozess erklaren"

o "... Beispiele zu Zweck und Inhalt eines Testkonzepts geben"

e "... die Aktivitaten des Reviewprozesses zusammenfassen"

Wissensstufe 3: Anwenden (K3) — der Lernende kann ein Verfahren anwenden, wenn er mit
einer vertrauten Aufgabe konfrontiert wird, oder das richtige Verfahren auswahlen und es auf
einen bestimmten Kontext anwenden.

Aktionsverben: anwenden, umsetzen, erstellen, nutzen.

Version 4.0.2 Seite 77 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certlfled. Tester ISTOB"
Foundation Level [e

Beispiele: Der Lernende kann ...

e "...die Priorisierung von Testféllen anwenden" (sollte sich auf ein Verfahren, eine
Technik, einen Prozess, einen Algorithmus usw. beziehen)

e "... einen Fehlerbericht erstellen"

e "...die Grenzwertanalyse zur Ableitung von Testfallen anwenden"

Referenzen fur die Taxonomiestufen der Lernziele:

Anderson, L. W. und Krathwohl, D. R. (Hrsg.) (2001): A Taxonomy for Learning, Teaching, and
Assessing: A Revision of Bloom's Taxonomy of Educational Objectives, Allyn & Bacon

Version 4.0.2 Seite 78 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

9. Anhang B — Verfolgbarkeitsmatrix des geschaftlichen Nutzens (Business Outcomes)

mit Lernzielen

Dieser Abschnitt listet die Anzahl der Lernziele des Foundation Levels auf, die mit dem geschaftlichen Nutzen in Verbindung stehen, sowie

die Verfolgbarkeit zwischen dem geschaftlichen Nutzen und den Lernzielen des Foundation Levels.

et) . clr s sl R T Y %l el e | | w
Geschaéftlicher Nutzen: Foundation Level 2l&|8|8|8|g|&g|8|g|&8|8|&8|38|8
[] oy 5 G o) ~ © © 5 i) Y] =
BO1 Verstehen, was Testen ist und warum es nutzlich ist 6
BO2 Die grundlegenden Konzepte des Testens von Software verstehen 22
Den Testansatz und die anzuwendenden Aktivitaten in Abhangigkeit vom
BO3 . e 6
Kontext des Testens identifizieren
BO4 Die Qualitat der Dokumentation bewerten und verbessern 9
BOS Die Effektivitat und Effizienz des Testens steigern 20
BO6 Den Testprozess an den Softwareentwicklungslebenszyklus anpassen 6
BO7 Grundsatze des Testmanagements verstehen 6
BO8 Klare und verstandliche Fehlerberichte schreiben und kommunizieren 1
Die Faktoren, die die Prioritaten und den Aufwand fiir das Testen
BO9 . 7
beeinflussen, verstehen
BO10 | Als Teil eines funktionstibergreifenden Teams arbeiten 8
BO11 | Risiken und Vorteile der Testautomatisierung kennen 1
BO12 | Wesentliche Fahigkeiten, die fur das Testen erforderlich sind, erkennen 5
BO13 | Die Auswirkungen von Risiken auf das Testen verstehen 4
BO14 | Uber den Testfortschritt und die Qualitat effektiv berichten 4
Version 4.0.2 Seite 79 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

ISTQB*

' Certified Tester
Foundation Level

Geschéftlicher Nutzen
Kapitel/ K- S IR I R
Unter- Lernziel — Der Lernende kann ... P I L I L = i Bl Bl B e
kapite el 818818818888 |8|8(8 8|8
RPINIR| BN BlEIRQCIRIR
Kapitel 1 | Grundlagen des Testens
1.1 Was ist Testen?
111 ... typische Testziele identifizieren K1 X
1.1.2 .. Testen von Debugging unterscheiden K2 X
1.2 Warum ist Testen notwendig?
1.2.1 .. Beispiele geben, warum Testen notwendig ist K2 X
1.2.2 .. die Beziehung zwischen Testen und Qualitatssicherung wiedergeben K1 X
1.2.3 .. zwischen Grundursache, Fehlhandlung, Fehlerzustand und Fehlerwirkung K2 X
unterscheiden
1.3 Grundsatze des Testens
131 .. die sieben Grundsatze des Testens erklaren K2 X
1.4 Testaktivitaten, Testmittel und Rollen des Testens
1.4.1 .. die verschiedenen Testaktivitdten und die damit verbundenen Aufgaben erklaren K2 X
1.4.2 .. die Auswirkungen des Kontexts auf den Testprozess erkldren K2 X X
1.43 ... Testmittel, die die Testaktivitaten unterstutzen, unterscheiden K2 X
14.4 .. die Bedeutung der Pflege der Verfolgbarkeit erklaren K2 X |X
1.4.5 .. die verschiedenen Rollen beim Testen vergleichen K2 X
1.5 Wesentliche Kompetenzen und bewdhrte Praktiken beim Testen
151 .. Beispiele, die fiir die allgemeinen Kompetenzen, die fiir das Testen erforderlich K2 X
sind, geben
1.5.2 .. die Vorteile des Whole-Team-Ansatzes wiedergeben K1 X
153 .. die Vor- und Nachteile des unabhdngigen Testens unterscheiden K2 X
Kapitel 2 Testen wahrend des Softwareentwicklungslebenszyklus
2.1 Testen im Kontext eines Softwareentwicklungslebenszyklus
Version 4.0.2 Seite 80 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

ISTQB*

Certified Tester
Foundation Level

Geschaftlicher Nutzen
Kapitel/ K- S IR I R
Unter- Lernziel — Der Lernende kann ... P I L I L = i Bl Bl B e
kapite el 818818818888 |8|8(8 8|8
RPINIR| BN BlEIRQCIRIR
2.1.1 .. die Auswirkungen des gewahlten Softwareentwicklungslebenszyklus auf das Testen | K2 X
erklaren
2.1.2 .. gute Praktiken fir das Testen, die fiir alle Softwareentwicklungslebenszyklen gelten, | K1 X
wiedergeben
2.1.3 .. die Beispiele fir Test-First-Ansatze in der Entwicklung wiedergeben K1 X
2.1.4 .. die moglichen Auswirkungen von DevOps auf das Testen zusammenfassen K2 X |X X |X
2.15 .. Shift-Left erklaren K2 X X
2.1.6 ... den Einsatz von Retrospektiven als Mechanismus zur Prozessverbesserung erkldaren | K2 X X
2.2 Teststufen und Testarten
221 ... die verschiedenen Teststufen unterscheiden K2 X X
2.2.2 ... die verschiedenen Testarten unterscheiden K2 X
2.2.3 ... Fehlernachtests von Regressionstests unterscheiden K2 X
23 Wartungstest
2.3.1 ... den Wartungstest und dessen Ausldser zusammenfassen K2 X X
Kapitel 3 | Statischer Test
3.1 Grundlagen des statischen Tests
3.1.1 ... Arten von Arbeitsergebnissen, die durch statischen Test geprift werden kénnen, K1 X |X
erkennen
3.1.2 ... den Wert statischer Tests erkldren K2 X X X
3.13 ... statischen Test und dynamischen Test vergleichen und gegeniiberstellen K2 X |X
3.2 Feedback- und Reviewprozess
3.2.1 .. Vorteile eines friihzeitigen und haufigen Stakeholder-Feedbacks erkennen K1 X X X
3.2.2 .. die Aktivitaten des Reviewprozesses zusammenfassen K2 X |X
323 .. die bei der Durchfiihrung von Reviews den Hauptrollen zugewiesenen K1 X X
Verantwortlichkeiten wiedergeben
Version 4.0.2 Seite 81 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

ISTQB*

Certified Tester
Foundation Level

Geschaftlicher Nutzen
Kapitel/ K- S IR I R
Unter- Lernziel — Der Lernende kann ... P I L I L = i Bl Bl B e
kapite el 818818818888 |8|8(8 8|8
RPINIR| BN BlEIRQCIRIR

3.2.4 ... verschiedene Arten von Reviews vergleichen und gegeniiberstellen K2 X
3.25 ... die Faktoren, die zu einem erfolgreichen Review beitragen, wiedergeben K1 X X
Kapitel 4 | Testanalyse und -entwurf
4.1 Testverfahren im Uberblick
4.1.1 ... Black-Box-Testverfahren, White-Box-Testverfahren und erfahrungsbasierte K2 X

Testverfahren unterscheiden
4.2 Black-Box-Testverfahren
4.2.1 ... die Aquivalenzklassenbildung zur Ableitung von Testfillen anwenden K3 X
4.2.2 ... die Grenzwertanalyse zur Ableitung von Testfallen anwenden K3 X
4.2.3 ... den Entscheidungstabellentest fiir die Ableitung von Testfillen anwenden K3 X
4.2.4 ... den Zustandsiibergangstest zur Ableitung von Testfdllen anwenden K3 X
4.3 White-Box-Testverfahren
43.1 ... den Anweisungstest erklaren K2 X
4.3.2 ... den Zweigtest erklaren K2 X
433 ... den Wert des White-Box-Tests erkldren K2 X X
4.4 Erfahrungsbasierte Testverfahren
4.4.1 ... die intuitive Testfallermittlung erklaren K2 X
4.4.2 ... den explorativen Test erklaren K2 X
443 ... den checklistenbasierten Test erklaren K2 X
4.5 Auf Zusammenarbeit basierende Testansétze
4.5.1 .. das Schreiben von User-Storys in Zusammenarbeit mit Entwicklern und K2 X X

Fachvertretern erklaren
4.5.2 .. die verschiedenen Mdoglichkeiten zum Schreiben von Akzeptanzkriterien einordnen | K2 X
4.5.3 .. die abnahmetestgetriebene Entwicklung (ATDD) zur Ableitung von Testfallen K3 X

anwenden
Version 4.0.2 Seite 82 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

ISTQB*

Certified Tester
Foundation Level

Geschaftlicher Nutzen
Kapitel/ K- S IR I R
Unter- Lernziel — Der Lernende kann ... P I L I L = i Bl Bl B e
kapite el 818818818888 |8|8(8 8|8
RPINIR| BN BlEIRQCIRIR
Kapitel 5 Management der Testaktivitdten
5.1 Testplanung
5.1.1 .. Beispiele zu Zweck und Inhalt eines Testkonzepts geben K2 X X
5.1.2 .. den moglichen Mehrwert, den ein Tester fir die Iterations- und Releaseplanung K1 X X X
schafft, erkennen
5.1.3 .. Eingangskriterien und Endekriterien vergleichen und gegentiberstellen K2 X X X
5.1.4 .. Schatzverfahren zur Berechnung des erforderlichen Testaufwands anwenden K3 X X
5.1.5 .. die Priorisierung von Testfdllen anwenden K3 X X
5.1.6 .. die Konzepte der Testpyramide wiedergeben K1 X
5.1.7 .. die Testquadranten und ihre Beziehungen zu Teststufen und Testarten K2 X X
zusammenfassen
5.2 Risikomanagement
521 .. die Risikostufe anhand der Eintrittswahrscheinlichkeit des Risikos und des K1 X X
SchadensausmaRes des Risikos identifizieren
5.2.2 .. zwischen Projektrisiken und Produktrisiken unterscheiden K2 X X
5.2.3 .. den moglichen Einfluss der Produktrisikoanalyse auf Griindlichkeit und Umfang des | K2 X X X
Testens erklaren
5.2.4 .. mogliche MaRBnahmen, die als Reaktion auf analysierte Produktrisiken ergriffen K2 X X X
werden kdnnen, erklaren
5.3 Testiiberwachung, Teststeuerung und Testabschluss
5.3.1 ... die beim Testen verwendeten Metriken wiedergeben K1 X X
5.3.2 ... Zweck, Inhalt und Zielgruppen von Testberichten zusammenfassen K2 X X X
5.3.3 ... Beispiele geben, wie man den Teststatus kommunizieren kann K2 X X
5.4 Konfigurationsmanagement
Version 4.0.2 Seite 83 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

ISTQB*

Certified Tester
Foundation Level

Geschaftlicher Nutzen
Kapitel/ K- S IR I R
Unter- Lernziel — Der Lernende kann ... P I L I L = i Bl Bl B e
kapitel level | & | o | o |0 |0 | 0| o|e|e|8 |8 (8|8|8
p 2IR|8|R[2|8|2(8|8|s5|e|s|g|%:

5.4.1 ... eine mogliche Unterstiitzung des Testens durch das Konfigurationsmanagement K2 X X

zusammenfassen
5.5 Fehlermanagement
5.5.1 ... einen Fehlerbericht erstellen K3 X X
Kapitel 6 | Testwerkzeuge
6.1 Werkzeugunterstiitzung fiir das Testen
6.1.1 ... eine mogliche Unterstiitzung des Testens durch verschiedene Arten von K2 X

Testwerkzeugen erklaren
6.2 Nutzen und Risiken von Testautomatisierung
6.2.1 ... die Nutzen und Risiken von Testautomatisierung wiedergeben K1 X X
Version 4.0.2 Seite 84 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan v
Foundation Level

10. Anhang C — Release Notes

Der ISTQB®-Lehrplan Foundation Level V4.0.2 (englische Originalversion v4.0.1) ist eine
korrigierte Version des Foundation-Level-Lehrplans V4.0. Diese Version enthalt die folgenden
Anderungen:

Anderung des Wortlauts der Lernziele, um sie mit den Begriffen des Glossars in Einklang zu
bringen.

< Der Lernende kann ...>

+ FL-1.4.1: ... die verschiedenen Testaktivitadten und -aufgaben zusammenfassen -> ...
die verschiedenen Testaktivitaten und die damit verbundenen Aufgaben erklaren

* FL-2.1.5: ... den Shift-Left-Ansatz erklaren -> ... Shift-Left erklaren

+ FL-3.1.1: ... Produktarten, die mit den verschiedenen statischen Testverfahren
gepruft werden kénnen, erkennen -> ... Arten von Arbeitsergebnissen, die durch
statischen Test geprift werden kénnen, erkennen

+ FL-3.1.3 ... statischen und dynamischen Test vergleichen und gegenuberstellen -> ...
statischen Test und dynamischen Test vergleichen und gegenuberstellen

+ FL-5.2.3: ... den mdglichen Einfluss der Produktrisikoanalyse auf Intensitat und
Umfang des Testens erklaren -> ... den mdglichen Einfluss der Produktrisikoanalyse
auf Grundlichkeit und Umfang des Testens erklaren

Textanderungen zur Ubereinstimmung mit den Begriffen des Glossars (Artefakte,
Dokumentation -> Arbeitsergebnisse, Ziele, Testziele des Projekts -> Testziele,
Testiberwachung und -steuerung -> Testiberwachung und Teststeuerung,
Testdokumentation -> Testmittel, iterativen und inkrementellen Entwicklungsmodellen ->
iterativen Entwicklungsmodellen und inkrementellen Entwicklungsmodellen, Software
Qualitdtsmerkmale -> Qualitdtsmerkmale, Testfortschritts- und Testabschlussberichte ->
Testfortschrittsberichte und Testabschlussberichte, Entwicklungsstadium ->
Entwicklungsphase, Komponenten- und Komponentenintegrationstests -> Komponententests
und Komponentenintegrationstests, der vertragliche und regulatorische Abnahmetest -> der
vertragliche Abnahmetest, der regulatorische Abnahmetest, Eingangs-/ Endekriterien ->
Eingangskriterien oder Endekriterien, organisationsweite Testrichtlinie -> Testrichtlinie, Shift-
Left-Ansatz -> Shift-Left, Phase des Testens -> Testaktivitat, Berichterstattung ->
Testberichterstattung, Berichterstattung Gber das Testen fir ein abgeschlossenes Projekt ->
Berichterstattung Uber den Testabschluss, Schritte -> Testschritte, Umfang des Testens ->
Testumfang, Werkzeuge fir Testentwurf und -realisierung -> Werkzeuge fiir Testentwurf und
Testrealisierung, statischer als auch dynamischer Test -> statischer Test als auch
dynamischer Test, erfahrungsbasierte Testverfahren (Schllsselbegriff) -> erfahrungsbasiertes
Testverfahren

Aktualisierung der 1ISO 25010. Eine neue Version der Norm ISO 25010 wurde 2023
veroffentlicht. Darin wird ,Gebrauchstauglichkeit® in ,Interaktionsfahigkeit® und
,Ubertragbarkeit” in ,Flexibilitdt* umbenannt, und es wird ein neues Merkmal ,Sicherheit

Version 4.0.2 Seite 85 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan —
Foundation Level ISTQB®

(Safety)“ hinzugefugt. Wir behalten die urspriinglichen Bezeichnungen der Merkmale bei,
fugen aber in Abschnitt 2.2.2 die neuen Bezeichnungen flur Gebrauchstauglichkeit und
Ubertragbarkeit hinzu. Auf Grund einer deutschen Glossaranderung heift IT-Sicherheit nun
Sicherheit (Security).

Drei Schlusselbegriffe wurden hinzugefligt (Testprozess und Verfolgbarkeit in Kapitel 1,
Teststrategie in Kapitel 5)

Korrekturen im Text
e In Abschnitt 1.1.2 wurden “Ursache” und “Grundursache” ersetzt durch “Fehlerzustand”.

e In Abschnitt 1.2.2 wurde “Qualitatssteuerung” ersetzt durch “Test”, da in diesem Abschnitt
Qualitatssicherung mit Testen verglichen wird.

e In Abschnitt 1.4.1 wurden die Beschreibungen der Aktivitaten klarer und eindeutiger
formuliert.

e In Abschnitt 1.4.3 wurde “automatisierte Testskripte” geandert in “manuelle und
automatisierte Testskripte”.

e In Abschnitt 1.4.4 wurde “festgestellten” in “festgestellten Fehlerzustanden” entfernt.

e In Abschnitt 2.1.3 wurde im Zusammenhang mit BDD “Die Testfélle werden dann
automatisch in ausfilhrbare Tests Ubersetzt” ersetzt durch “Die Testfalle sollten dann
automatisch in ausfiihrbare Tests Ubersetzt werden”.

e In Abschnitt 2.1.4 wurde “Das Risiko einer zu aufwendigen Regression” geandert in “Das
Risiko einer Regression”.

e In Abschnitt 2.1.5 wurde “aus der Sicht des Testens” verandert in “aus der Sicht der Tester”
und “Testen zu einem friheren Zeitpunkt im SDLC durchgefihrt wird” verandert in “Testen
zu einem fruheren Zeitpunkt im SDLC erfolgt”.

e In Abschnitt 2.1.6 wurde “(auch bekannt als Projekt-Abschluss-Sitzungen oder
Bewertungssitzungen und Projekt-Retrospektiven)” entfernt.

e In Abschnitt 2.2.2 wurde die Beschreibung der Testbasis von “Dokumentation auf3erhalb
des Testobjekts” in “Dokumentation..., die sich nicht auf die interne Struktur des
Testobjekts bezieht” gedndert, um den Unterschied zwischen Black-Box-Tests und White-
Box-Tests besser zu verdeutlichen. Au3erdem haben wir den Systemtest als Beispiel fur
einen frihen Start im SDLC entfernt.

e In Abschnitt 3.1 wurde Fachbereichsvertreter genauer spezifiziert.

e In Abschnitt 3.1.2 “bestimmte” wurde in “Bestimmte Fehlerzustiande im Code konnen durch
statische Analyse effizienter aufgedeckt werden” hinzugefugt.

e In Abschnitt 3.2.3 wurde “korrigiert das Arbeitsergebnis des Reviews” verandert in
“korrigiert das zu prifende Arbeitsergebnis”.

Version 4.0.2 Seite 86 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan —
Foundation Level ISTQB®

e In Abschnitt 4.1 wurde “und ihren entsprechenden Messgrofien” aus “Weitere
Informationen zu Testverfahren und ihren entsprechenden MessgrofRen” entfernt.

e In Abschnitt 4.2.1 wurde “Testobjekt” durch “Testelement” ersetzt, weil dies der korrekte
Begriff im Zusammenhang mit der Anwendung von Testverfahren ist.

« In Abschnitt 4.2.1 hinzugefiigt, dass ungiiltige Aquivalenzklassen isoliert getestet werden
sollten, um eine Fehlermaskierung zu vermeiden.

e In Abschnitt 4.2.4 wird “Zustandsibergangsdiagramm” durch “Zustandsdiagramm” ersetzt,
da dies die Ubliche Bezeichnung dieses Modells in der Informatik ist und auch, um mit dem
Lehrplan fir modellbasiertes Testen konsistent zu sein.

e In Abschnitt 4.2.4 “pbesuchte Zustande” durch “ausgeflhrte Zusténde” ersetzt, da
.2ausfuhren® der richtige Begriff im Zusammenhang mit der Uberdeckung der
Modellelemente durch Testfalle ist.

e In Abschnitt 4.3 wurde die Uberschrift von “White-Box-Test” in “White-Box-Testverfahren”
geandert.

e In Abschnitt 5.1.1 wurde der Begriff “Einschrankungen” aus dem ersten Aufzahlungspunkt
gestrichen; die Einschrankungen stehen im Mittelpunkt des zweiten Aufzahlungspunkts.

e In Abschnitt 5.1.3 wird “Testabschlusskriterien” im Zusammenhang mit binaren ,ja/nein®-
Kriterien verwendet, nicht als Synonym fur “Endekriterien”, daher wurde der
entsprechende Begriff geandert.

e In Abschnitt 5.1.6 wurde die Beziehung zwischen den Ebenen der Testpyramide und den
Testisolationsstufen korrigiert (je héher die Ebene, desto niedriger die Testisolation).
AuRerdem haben wir “eine angemessene Uberdeckung” durch “einen angemessenen
Uberdeckungsgrad” ersetzt.

¢ In Abschnitt 5.5 wurde “Anomalien” mit “Fehlerzustande oder Anomalien” ausgetauscht.
e In Abschnitt 6.2 wurde “Fehlerquote” ersetzt durch “Ausfallraten”.
e In Abschnitt 0.6 wurde Referenz auf weiterfiihrende Dokumente korrigiert.

AuRerdem wurden einige Rechtschreibefehler behoben und einige Begriffe wurden Uber den
gesamten Lehrplan hinweg vereinheitlicht.

In der deutschsprachigen Fassung gab es dariiber hinaus folgende Anderungen:

¢ Die Schreibweise User-Story wurde den Regeln der deutschen Rechtschreibung
angepasst.

¢ Kontrollflussdiagramm (4.3.2, 4.3.3) wurde durch Kontrollflussgraph ersetzt.

¢ Intensitat wurde durch Grindlichkeit ersetzt (Lernziel FL-5.2.3).

e Herleitung wurde durch Ermittlung ersetzt (6.2).

Version 4.0.2 Seite 87 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan —
Foundation Level ISTQB®

o Korrekturen gemaf Glossar, z. B. Abnahmekriterien (Schlisselbegriff) ->
Akzeptanzkriterien, Zeigliberdeckungstests (Schlisselbegriff) -> Zweigliberdeckung
e Kleinere Ubersetzungsfehler wurden behoben.

RELEASE NOTES FUR VERSION 4.0

Der ISTQB®-Lehrplan Foundation Level V4.0 ist eine umfassende Aktualisierung, die auf dem
Foundation-Level-Lehrplan (V3.1.1) und dem Lehrplan Agile Tester 2014 basiert. Aus diesem
Grund gibt es keine detaillierten Versionshinweise pro Kapitel und Abschnitt. Im Folgenden
finden Sie jedoch eine Zusammenfassung der wichtigsten Anderungen. Dariiber hinaus bietet
das ISTQB® in einem separaten Dokument mit Versionshinweisen die Verfolgbarkeit zwischen
den Lernzielen in der Version 3.1.1 des Foundation-Level-Lehrplans, der Version 2014 des
Lehrplans Agile Tester und den Lernzielen im neuen Foundation-Level-Lehrplan V4.0 an und
zeigt auf, welche Lernziele hinzugefugt, aktualisiert oder entfernt wurden.

Zum Zeitpunkt der Erstellung des Lehrplans (2022-2023) haben mehr als eine Million
Menschen in mehr als 100 Landern die ISTQB®-Priifung Foundation Level abgelegt, und mehr
als 800.000 sind weltweit zertifizierte Tester. Da man davon ausgehen kann, dass alle von
ihnen den Foundation-Lehrplan gelesen haben, um die Prifung bestehen zu kénnen, ist der
Foundation-Lehrplan wahrscheinlich das meistgelesene Dokument zum Thema Softwaretest
uberhaupt! Mit dieser umfassenden Aktualisierung wird diesem Erbe Rechnung getragen.
Auferdem soll die Meinung Hunderttausender weiterer Personen Uber die Qualitat, die das
ISTQB® der weltweiten Gemeinschaft der Tester bietet, verbessert werden.

In dieser Version wurden alle Lernziele Uberarbeitet, um sie atomar zu machen und um eine
Eins-zu-eins-Verfolgbarkeit zwischen Lernziel und Lehrplanabschnitten zu schaffen, so dass
es keine Inhalte ohne Lernziel gibt. Ziel war es, diese Version leichter lesbar, verstandlich,
erlernbar und Ubersetzbar zu machen, wobei der Schwerpunkt auf dem praktischen Nutzen
und der Ausgewogenheit zwischen Wissen und Fahigkeiten liegt.

In dieser Hauptversion wurden die folgenden Anderungen vorgenommen:

e Kirzung des gesamten Lehrplans. Der Lehrplan ist kein Lehrbuch, sondern ein
Dokument, das dazu dient, die grundlegenden Elemente eines Einflihrungskurses in
das Testen von Software zu umreif3en, einschlielich seiner Themen und auf welchem
Niveau sie behandelt werden sollten. Daher gilt insbesondere:

- In den meisten Fallen wurden Beispiele aus dem Text entfernt. Es ist die
Aufgabe eines Schulungsanbieters, die Beispiele sowie die Ubungen wahrend
der Schulung bereitzustellen.

- Die "Checkliste zum Verfassen von Lehrplanen" wurde befolgt, die die
maximale Textlange fur die Lernziele auf jeder Stufe vorgibt: (K1 = max. 10
Zeilen, K2 = max. 15 Zeilen, K3 = max. 25 Zeilen).

e Reduktion der Anzahl der Lernziele im Vergleich zu den Lehrplanen Foundation Level
(FL) V3.1.1 und Agile Tester (AT) V2014 zusammen

Version 4.0.2 Seite 88 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan —
Foundation Level ISTQB®

- 14 K1-Lernziele im Vergleich zu 21 K1-Lernzielen in FL V3.1.1 (15) und AT
2014 (6)

- 42 K2-Lernziele im Vergleich zu 53 K2-Lernzielen in FL V3.1.1 (40) und AT
2014 (13)

- 8 K3-Lernziele im Vergleich zu 15 K3-Lernzielen in FL V3.1.1 (7) und AT 2014
(8)

e Ausflhrlichere Verweise auf klassische und/oder anerkannte Biicher und Artikel tber
das Testen von Software und verwandte Themen werden bereitgestellt.

e Wesentliche Anderungen in Kapitel 1 (Grundlagen des Testens):
- Abschnitt Uber Fahigkeiten beim Testen wurde erweitert und verbessert.
- Abschnitt Gber den Whole-Team-Ansatz (K1) wurde hinzugefugt.

- Abschnitt Gber das unabhangige Testen wurde von Kapitel 5 in Kapitel 1
verschoben.

o Wesentliche Anderungen in Kapitel 2 (Testen wahrend des
Softwareentwicklungslebenszyklus):

- Die Abschnitte 2.1.1 und 2.1.2 wurden umgeschrieben und verbessert, die
entsprechenden Lernziele wurden geandert.

- Mehr Fokus liegt nun auf Praktiken wie: Test-First-Ansatz (K1), Shift-Left (K2),
Retrospektiven (K2).

- Neuer Abschnitt zum Testen im Kontext von DevOps (K2) wurde hinzugefugt.

- Aufteilung der Teststufe Integrationstest in zwei separate Teststufen:
Komponentenintegrationstests und Systemintegrationstests.

e Wesentliche Anderungen in Kapitel 3 (Statischer Test):

- Abschnitt Uber Reviewverfahren wurde zusammen mit dem K3-Lernziel (Ein
Reviewverfahren auf ein Arbeitsergebnis anwenden koénnen, um
Fehlerzustande zu finden) entfernt.

e Wesentliche Anderungen in Kapitel 4 (Testanalyse und -entwurf):

- Anwendungsfallbasiertes Testen wurde entfernt (ist aber im Lehrplan Certified
Tester Advanced Level Test Analyst noch enthalten).

- Starkerer Fokus wurde auf den auf Zusammenarbeit basierenden Testansatz
gelegt: neues K3-Lernziel uber die Verwendung von ATDD zur Ableitung von
Testfallen und zwei neue K2-Lernziele Uber User-Storys und
Akzeptanzkriterien.

- Entscheidungstests und -Uberdeckung werden durch Zweigtests und -Uberde-
ckung ersetzt (erstens wird die Zweigiberdeckung in der Praxis haufiger
verwendet; zweitens definieren verschiedene Standards die Entscheidung
anders als den "Zweig"; drittens wird damit ein subtiler, aber schwerwiegender
Fehler des alten FL2018 behoben, der behauptet, dass "100 %

Version 4.0.2 Seite 89 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan —
Foundation Level ISTQB®

Entscheidungsiberdeckung 100 % Anweisungstberdeckung impliziert"
dieser Satz ist im Falle von Programmen ohne Entscheidungen falsch).

- Abschnitt Gber den Wert des White-Box-Tests wurde verbessert.
e Wesentliche Anderungen in Kapitel 5 (Management der Testaktivitaten):
- Abschnitt Gber Teststrategien/-vorgehensweisen wurde entfernt.

- Neues K3-Lernziel Uber Schatzverfahren zum Abschatzen des Testaufwands
wurde hinzugefugt.

- Starkerer Fokus wurde auf die allseits gebrauchlichen Konzepte und
Werkzeuge im Testmanagement von agilen Projekten gelegt: Iterations- und
Releaseplanung (K1), Testpyramide (K1) und Testquadranten (K2).

- Der Abschnitt Uber Risikomanagement wurde besser strukturiert, indem vier
Hauptaktivitadten beschrieben werden: Risikoidentifizierung, Risikobewertung,
Risikominderung und Risikouberwachung.

e Wesentliche Anderungen in Kapitel 6 (Testwerkzeuge):

- Der Inhalt zu einigen Sachverhalten der Testautomatisierung wurde reduziert,
da er fir den Foundation Level zu anspruchsvoll ist — der Abschnitt (iber die
Auswahl von Werkzeugen, die Durchfiihrung von Pilotprojekten und die
Einfuhrung von Werkzeugen im Unternehmen wurde entfernt.

Version 4.0.2 Seite 90 von 94 01.03.2025

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Certified Tester Lehrplan
Foundation Level

11. Index

0
0-Switch-Uberdeckung 49

2
2-Wert-Grenzwertanalyse 47

3

3C 53
3-Wert-Grenzwertanalyse 47

A

Abhangigkeiten (Priorisierung) 60
Abnahmetest 33

Benutzerabnahmetest 33

betrieblicher Abnahmetest 33
Abnahmetestgetriebene Entwicklung 28, 29, 54
Acceptance Test-Driven Development Siehe

abnahmetestgetriebene Entwicklung
Akzeptanzkriterien 23
Alpha-Test 33
Anforderungsbasierte Priorisierung 60
Anomalie 41, 68
Anweisung 50
Anweisungstest 50
Anweisungsuberdeckung 50
Aquivalenzklassenbildung 45
ATDD Siehe Abnahmestestgetriebene Entwicklung
Auf Zusammenarbeit basierender Testansatz 53
Aufwandsschatzung 59

Breitband-Delphi 59

Drei-Punkt-Schatzung 59

Extrapolation 59

Schatzung basierend auf Verhéltniszahlen 59
ausfiihrbare Anweisung 50
Auslieferungskette 68
Auswirkungsanalyse 35
Autor (Reviews) 41

B

Baseline 67

BDD Siehe verhaltensgetriebene Entwicklung

Behavior-Driven Development Siehe
Verhaltensgetriebene Entwicklung

Bestatigungsfehler 25

Beta-Test 33

Version 4.0.2

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Seite 91 von 94

Black-Box-Test 34, 45
Black-Box-Testverfahren Siehe Black-Box-Test
Blooms Taxonomie 77

Burn-Down-Chart 67

C

CD Siehe kontinuierliche Auslieferung

Checkliste 68

checklistenbasierter Test 52

Cl Siehe kontinuierliche Integration

Container-Tools 71

Continuous Delivery Siehe kontinuierliche
Auslieferung

Continuous integration Siehe kontinuierliche
Integration

D

DDD Siehe domanengesteuertes Design

Debugging 17

Definition-of-Done 58

Definition-of-Ready 38, 58

DevOps 30, 35, 68

DevOps-Werkzeuge 71

Domain-Driven Design Siehe doméanengesteuertes
Design

domanengesteuertes Design 28

Dynamischer Test 16, 39

E

Each-Choice-Uberdeckung 46

Eingangskriterien 23, 58

Endekriterien 23, 43, 58

Entscheidungstabelle 47

erfahrungsbasierte Testverfahren Siehe
erfahrungsbasierter Test

erfahrungsbasierter Test 45, 51

explorativer Test 52

Extreme Programming 28

F

FDD Siehe Feature-getriebene Entwicklung

Feature-Driven Development Siehe Feature-
getriebene Entwicklung

Feature-getriebene Entwicklung 28

Feedback 40, 43

Fehlerangriff 52

01.03.2025

Certified Tester Lehrplan
Foundation Level

Fehlerbericht 23, 41, 68
Fehlerdichte 65
Fehlerfindungsrate 65
Fehlermanagement 68
Fehlernachtest 17, 34
Fehlerwirkung 19, 39
Fehlerzustand 19, 38, 39
Fehlhandlung 19
funktionale Angemessenheit 33
funktionale Korrektheit 33
funktionale Vollstandigkeit 33

G

Gebrauchstauglichkeit 34
Gegeben/Wenn/Dann 29, 54
geschéaftlicher Nutzen 79
Geschéaftsregel 47
Grenzwertanalyse 46
Grundursache 19

guard condition Siehe Wachterbedingung

gultige Klasse 46
Gutachter 42

Hotfix 35

inkrementelles Entwicklungsmodell 28

Inspektion 43

Integrationstest 33, 61
Interaktionsfahigkeit 34

intuitive Testfallermittiung 51
INVEST-Prinzip 54

Irrtum Siehe Fehlhandlung
Iterationsplanung 57

iteratives Entwicklungsmodell 28

K

Kanban 28

kognitive Verzerrung 26
kognitive Wissensstufen 77
Kommunikation 67
Kompatibilitat 34

Kompetenzen 24
Komponentenintegrationstest 33
Komponententest 32, 61
Konfigurationselement 67
Konfigurationsmanagement 67
kontinuierliche Auslieferung 30
kontinuierliche Integration 30
kontinuierliche Verbesserung 32
Kontrollflussgraph 50

Version 4.0.2

L
Lean IT 28
Lernziele 79
Lessons Learned 23

M

Managementwerkzeug 71
Manager (Reviews) 41
meantime to failure 65
Metrik 65

Moderator 42

N

nicht-funktionaler Test 31

P

Pareto-Prinzip 20

Performanz 34

Platzhalter 23

Priorisierung von Testfallen 60
Produkt-Backlog 23
Produktrisiko 63

Projektrisiko 62

Protokollant (Reviews) 42
Prototyping 28

Q
Qualitat 16, 18
Qualitadtsmerkmal 39
Qualitatssicherung 18
Qualitatssteuerung 18

R

Regressionstest 17, 35
Releaseplanung 57
Retrospektive 31
Review 38

formales Review 42

informelles Review 42
Reviewer Siehe Gutachter
Reviewleiter 42
Reviewprozess 41
Reviewverfahren 38
Risiko 16, 62, 66

Eintrittswahrscheinlichkeit des Risikos 62

SchadensausmaR des Risikos 62
Risikoanalyse 62, 63
Risikobasierte Priorisierung 60
Risikobewertung 62, 63

Seite 92 von 94

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

01.03.2025

Certified Tester Lehrplan
Foundation Level

Risikoidentifizierung 62, 63
Risikomanagement 62
Risikomatrix 63
Risikominderung 62, 64
Risikosteuerung 62, 64
Risikostufe 62
Risikouberwachung 62, 64
Risikoverzeichnis 23, 57
Rolle des Testens 24

S

Safety Siehe Sicherheit (Safety)

Schatzung 59

Scrum 28

SDLC Siehe Softwareentwicklungslebenszyklus,
Siehe Softwareentwicklungslebenszyklus

Security Siehe Sicherheit (Security)

sequenzielles Entwicklungsmodell 28

Service-Test 61

Service-Virtualisierung 23

Shift-Left 31

Sicherheit (Safety) 34

Sicherheit (Security) 34

Simulation 33

Simulator 23

Softwareentwicklungslebenszyklus 28

Softwareentwicklungslebenszyklusmodell 57, 68,
71

Spezifikation 34

Spezifikationsworkshop 54

Spiralmodell 28

statische Analyse 31, 38

Statischer Test 16, 17, 38, 39, 51

Steuerungsmafinahmen 23

System unter Test 33

Systemintegrationstest 33

Systemtest 33

T

TDD Siehe Testgetriebene Entwicklung
Technisches Review 42
Test 16, 17
friihes Testen 20, 31, 38
funktionaler Test 33
kontinuierlicher Test 21
nicht-funktionaler Test 33
risikobasierter Test 62
sitzungsbasierter Test 52
Unabhangigkeit 26
vollstandiger / erschopfender Test 19
Test in Paaren 21
Testablauf 21, 23, 60
Testabschluss 22, 65
Testabschlussbericht 23, 32, 66

Version 4.0.2

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Testanalyse 21, 29
Testansatz 57, 58, 62
Testart 33
Testaufwand 59
Testausfiuhrungsplan 21, 23
Testautomatisierung 30, 71
Testautomatisierungsframework 55
Testbarkeit 21
Testbasis 21, 23, 33
Testbedingung 21, 23, 53, 54
Testbericht 65
Test-Charta 21, 23, 52
Testdaten 21, 23
Test-Driven Development Siehe Testgetriebene
Entwicklung
Testdurchfiihrung 21
Testentwurf 21, 29
Testergebnis 22, 67
Testfall 21, 23, 60
Test-First-Ansatz 54
Testfortschrittsbericht 23, 65
Testgetriebene Entwicklung 28, 29
Testkonzept 23, 57
Testmanagementrolle 24
Testmetrik 65, 66
Testmittel 21, 22, 23
Testobjekt 16, 21, 33
Testplanung 21, 57
Testprotokoll 23
Testprozess 20, 22
Testpyramide 60
Testquadranten 61
Testrahmen 32
Testrealisierung 21
Testrichtlinie 57
Testskript 21, 23
Teststatus 67
Teststatusbericht 66
Teststeuerung 21, 64
Teststrategie 22, 57
Teststufe 29, 32
Testsuite 21, 23, 60
Testiiberwachung 21, 64
Testumgebung 21, 23
Testverfahren 45
Testwerkzeug 71
Testzeitplan 23
Testziel 16, 29, 57
Treiber 23

U

Uberdeckung 22, 23, 46, 47, 48, 49, 50, 53
Uberdeckung aller Ubergénge 49
Uberdeckung aller Zustéande 49
Uberdeckung der giiltigen Ubergénge 49
Uberdeckungsbasierte Priorisierung 60

Seite 93 von 94 01.03.2025

Certified Tester Lehrplan
Foundation Level

Uberdeckungselement 21, 23, 46, 47, 48, 49, 50,
52

Ubertragbarkeit 34

Ul-Test 61

unabhéngiges Testteam 33

unglltige Klasse 46

Unified Process 28

Unit-Test 61

Unittest-Frameworks 32

User Acceptance Testing 33

User-Story 53, 58

\"

Validierung 16, 38

Verfolgbarkeit 23

Verhaltensgetriebene Entwicklung 28, 29, 54
Verifizierung 16, 38

virtuelle Maschinen 71

V-Modell 28

W

Wachterbedingung 48
Walkthrough 42

Version 4.0.2

© Austrian Testing Board, German Testing Board e. V., Swiss Testing Board

Seite 94 von 94

Wartbarkeit 34

Wartungstest 35

Wasserfallmodell 28

Werkzeug flr die Zusammenarbeit 71
Werkzeug flr nicht-funktionale Tests 71
Werkzeug fir statische Tests 71

Werkzeug flr Testrealisierung 71, 85
Werkzeug zur Testdurchfiihrung 71

Werkzeug zur Testlberdeckung 71

Werkzeuge fiir Testentwurf 71, 85
White-Box-Test 34, 45, 49
White-Box-Testverfahren Siehe White-Box-Test
Whole Team Approach Siehe Whole-Team-Ansatz
Whole-Team-Ansatz 25

Zusammenarbeit 53
Zustandstabelle 48
Zustandsubergangsdiagramm 48
Zustandsubergangstest 49
Zuverlassigkeit 34

Zweigtest 50
Zweiguberdeckung 50

01.03.2025

